NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  necon2ai GIF version

Theorem necon2ai 2562
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
necon2ai.1 (A = B → ¬ φ)
Assertion
Ref Expression
necon2ai (φAB)

Proof of Theorem necon2ai
StepHypRef Expression
1 nne 2521 . . 3 ABA = B)
2 necon2ai.1 . . 3 (A = B → ¬ φ)
31, 2sylbi 187 . 2 AB → ¬ φ)
43con4i 122 1 (φAB)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  necon2i  2564  neneqad  2587  peano4  4558  addccan2  4560  ncssfin  6152  ncspw1eu  6160  nntccl  6171  ceclb  6184  ce0ncpw1  6186  cecl  6187  nclecid  6198  le0nc  6201  addlecncs  6210
  Copyright terms: Public domain W3C validator