New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > necon2ai | GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon2ai.1 | ⊢ (A = B → ¬ φ) |
Ref | Expression |
---|---|
necon2ai | ⊢ (φ → A ≠ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2521 | . . 3 ⊢ (¬ A ≠ B ↔ A = B) | |
2 | necon2ai.1 | . . 3 ⊢ (A = B → ¬ φ) | |
3 | 1, 2 | sylbi 187 | . 2 ⊢ (¬ A ≠ B → ¬ φ) |
4 | 3 | con4i 122 | 1 ⊢ (φ → A ≠ B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-ne 2519 |
This theorem is referenced by: necon2i 2564 neneqad 2587 peano4 4558 addccan2 4560 ncssfin 6152 ncspw1eu 6160 nntccl 6171 ceclb 6184 ce0ncpw1 6186 cecl 6187 nclecid 6198 le0nc 6201 addlecncs 6210 |
Copyright terms: Public domain | W3C validator |