Proof of Theorem ax10lem2
Step | Hyp | Ref
| Expression |
1 | | hbe1 1731 |
. . . 4
⊢ (∃x ¬
x = y
→ ∀x∃x ¬ x =
y) |
2 | | equequ2 1686 |
. . . . . . . 8
⊢ (z = y →
(x = z
↔ x = y)) |
3 | 2 | biimprd 214 |
. . . . . . 7
⊢ (z = y →
(x = y
→ x = z)) |
4 | 3 | con3rr3 128 |
. . . . . 6
⊢ (¬ x = z →
(z = y
→ ¬ x = y)) |
5 | | 19.8a 1756 |
. . . . . 6
⊢ (¬ x = y →
∃x ¬
x = y) |
6 | 4, 5 | syl6 29 |
. . . . 5
⊢ (¬ x = z →
(z = y
→ ∃x ¬ x =
y)) |
7 | | ax-17 1616 |
. . . . . 6
⊢ (¬ z = y →
∀x
¬ z = y) |
8 | | equequ1 1684 |
. . . . . . . 8
⊢ (x = z →
(x = y
↔ z = y)) |
9 | 8 | notbid 285 |
. . . . . . 7
⊢ (x = z →
(¬ x = y ↔ ¬ z
= y)) |
10 | 9 | biimprd 214 |
. . . . . 6
⊢ (x = z →
(¬ z = y → ¬ x
= y)) |
11 | 7, 10 | spimeh 1667 |
. . . . 5
⊢ (¬ z = y →
∃x ¬
x = y) |
12 | 6, 11 | pm2.61d1 151 |
. . . 4
⊢ (¬ x = z →
∃x ¬
x = y) |
13 | 1, 12 | exlimih 1804 |
. . 3
⊢ (∃x ¬
x = z
→ ∃x ¬ x =
y) |
14 | | exnal 1574 |
. . 3
⊢ (∃x ¬
x = z
↔ ¬ ∀x x = z) |
15 | | exnal 1574 |
. . 3
⊢ (∃x ¬
x = y
↔ ¬ ∀x x = y) |
16 | 13, 14, 15 | 3imtr3i 256 |
. 2
⊢ (¬ ∀x x = z →
¬ ∀x x = y) |
17 | 16 | con4i 122 |
1
⊢ (∀x x = y →
∀x
x = z) |