NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  datisi GIF version

Theorem datisi 2313
Description: "Datisi", one of the syllogisms of Aristotelian logic. All φ is ψ, and some φ is χ, therefore some χ is ψ. (In Aristotelian notation, AII-3: MaP and MiS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
datisi.maj x(φψ)
datisi.min x(φ χ)
Assertion
Ref Expression
datisi x(χ ψ)

Proof of Theorem datisi
StepHypRef Expression
1 datisi.min . 2 x(φ χ)
2 simpr 447 . . . 4 ((φ χ) → χ)
3 datisi.maj . . . . . 6 x(φψ)
43spi 1753 . . . . 5 (φψ)
54adantr 451 . . . 4 ((φ χ) → ψ)
62, 5jca 518 . . 3 ((φ χ) → (χ ψ))
76eximi 1576 . 2 (x(φ χ) → x(χ ψ))
81, 7ax-mp 5 1 x(χ ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  ferison  2315
  Copyright terms: Public domain W3C validator