New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > datisi | GIF version |
Description: "Datisi", one of the syllogisms of Aristotelian logic. All φ is ψ, and some φ is χ, therefore some χ is ψ. (In Aristotelian notation, AII-3: MaP and MiS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
datisi.maj | ⊢ ∀x(φ → ψ) |
datisi.min | ⊢ ∃x(φ ∧ χ) |
Ref | Expression |
---|---|
datisi | ⊢ ∃x(χ ∧ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | datisi.min | . 2 ⊢ ∃x(φ ∧ χ) | |
2 | simpr 447 | . . . 4 ⊢ ((φ ∧ χ) → χ) | |
3 | datisi.maj | . . . . . 6 ⊢ ∀x(φ → ψ) | |
4 | 3 | spi 1753 | . . . . 5 ⊢ (φ → ψ) |
5 | 4 | adantr 451 | . . . 4 ⊢ ((φ ∧ χ) → ψ) |
6 | 2, 5 | jca 518 | . . 3 ⊢ ((φ ∧ χ) → (χ ∧ ψ)) |
7 | 6 | eximi 1576 | . 2 ⊢ (∃x(φ ∧ χ) → ∃x(χ ∧ ψ)) |
8 | 1, 7 | ax-mp 5 | 1 ⊢ ∃x(χ ∧ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: ferison 2315 |
Copyright terms: Public domain | W3C validator |