New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > disamis | GIF version |
Description: "Disamis", one of the syllogisms of Aristotelian logic. Some φ is ψ, and all φ is χ, therefore some χ is ψ. (In Aristotelian notation, IAI-3: MiP and MaS therefore SiP.) (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
disamis.maj | ⊢ ∃x(φ ∧ ψ) |
disamis.min | ⊢ ∀x(φ → χ) |
Ref | Expression |
---|---|
disamis | ⊢ ∃x(χ ∧ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disamis.maj | . 2 ⊢ ∃x(φ ∧ ψ) | |
2 | disamis.min | . . . . 5 ⊢ ∀x(φ → χ) | |
3 | 2 | spi 1753 | . . . 4 ⊢ (φ → χ) |
4 | 3 | anim1i 551 | . . 3 ⊢ ((φ ∧ ψ) → (χ ∧ ψ)) |
5 | 4 | eximi 1576 | . 2 ⊢ (∃x(φ ∧ ψ) → ∃x(χ ∧ ψ)) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ ∃x(χ ∧ ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: bocardo 2316 |
Copyright terms: Public domain | W3C validator |