NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedth4h GIF version

Theorem dedth4h 3707
Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h 3705. (Contributed by NM, 16-May-1999.)
Hypotheses
Ref Expression
dedth4h.1 (A = if(φ, A, R) → (τη))
dedth4h.2 (B = if(ψ, B, S) → (ηζ))
dedth4h.3 (C = if(χ, C, F) → (ζσ))
dedth4h.4 (D = if(θ, D, G) → (σρ))
dedth4h.5 ρ
Assertion
Ref Expression
dedth4h (((φ ψ) (χ θ)) → τ)

Proof of Theorem dedth4h
StepHypRef Expression
1 dedth4h.1 . . . 4 (A = if(φ, A, R) → (τη))
21imbi2d 307 . . 3 (A = if(φ, A, R) → (((χ θ) → τ) ↔ ((χ θ) → η)))
3 dedth4h.2 . . . 4 (B = if(ψ, B, S) → (ηζ))
43imbi2d 307 . . 3 (B = if(ψ, B, S) → (((χ θ) → η) ↔ ((χ θ) → ζ)))
5 dedth4h.3 . . . 4 (C = if(χ, C, F) → (ζσ))
6 dedth4h.4 . . . 4 (D = if(θ, D, G) → (σρ))
7 dedth4h.5 . . . 4 ρ
85, 6, 7dedth2h 3705 . . 3 ((χ θ) → ζ)
92, 4, 8dedth2h 3705 . 2 ((φ ψ) → ((χ θ) → τ))
109imp 418 1 (((φ ψ) (χ θ)) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by:  dedth4v  3710
  Copyright terms: Public domain W3C validator