| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dedth4h | GIF version | ||
| Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h 3705. (Contributed by NM, 16-May-1999.) |
| Ref | Expression |
|---|---|
| dedth4h.1 | ⊢ (A = if(φ, A, R) → (τ ↔ η)) |
| dedth4h.2 | ⊢ (B = if(ψ, B, S) → (η ↔ ζ)) |
| dedth4h.3 | ⊢ (C = if(χ, C, F) → (ζ ↔ σ)) |
| dedth4h.4 | ⊢ (D = if(θ, D, G) → (σ ↔ ρ)) |
| dedth4h.5 | ⊢ ρ |
| Ref | Expression |
|---|---|
| dedth4h | ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth4h.1 | . . . 4 ⊢ (A = if(φ, A, R) → (τ ↔ η)) | |
| 2 | 1 | imbi2d 307 | . . 3 ⊢ (A = if(φ, A, R) → (((χ ∧ θ) → τ) ↔ ((χ ∧ θ) → η))) |
| 3 | dedth4h.2 | . . . 4 ⊢ (B = if(ψ, B, S) → (η ↔ ζ)) | |
| 4 | 3 | imbi2d 307 | . . 3 ⊢ (B = if(ψ, B, S) → (((χ ∧ θ) → η) ↔ ((χ ∧ θ) → ζ))) |
| 5 | dedth4h.3 | . . . 4 ⊢ (C = if(χ, C, F) → (ζ ↔ σ)) | |
| 6 | dedth4h.4 | . . . 4 ⊢ (D = if(θ, D, G) → (σ ↔ ρ)) | |
| 7 | dedth4h.5 | . . . 4 ⊢ ρ | |
| 8 | 5, 6, 7 | dedth2h 3705 | . . 3 ⊢ ((χ ∧ θ) → ζ) |
| 9 | 2, 4, 8 | dedth2h 3705 | . 2 ⊢ ((φ ∧ ψ) → ((χ ∧ θ) → τ)) |
| 10 | 9 | imp 418 | 1 ⊢ (((φ ∧ ψ) ∧ (χ ∧ θ)) → τ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ifcif 3663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
| This theorem is referenced by: dedth4v 3710 |
| Copyright terms: Public domain | W3C validator |