| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dedth3h | GIF version | ||
| Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h 3705. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth3h.1 | ⊢ (A = if(φ, A, D) → (θ ↔ τ)) |
| dedth3h.2 | ⊢ (B = if(ψ, B, R) → (τ ↔ η)) |
| dedth3h.3 | ⊢ (C = if(χ, C, S) → (η ↔ ζ)) |
| dedth3h.4 | ⊢ ζ |
| Ref | Expression |
|---|---|
| dedth3h | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth3h.1 | . . . 4 ⊢ (A = if(φ, A, D) → (θ ↔ τ)) | |
| 2 | 1 | imbi2d 307 | . . 3 ⊢ (A = if(φ, A, D) → (((ψ ∧ χ) → θ) ↔ ((ψ ∧ χ) → τ))) |
| 3 | dedth3h.2 | . . . 4 ⊢ (B = if(ψ, B, R) → (τ ↔ η)) | |
| 4 | dedth3h.3 | . . . 4 ⊢ (C = if(χ, C, S) → (η ↔ ζ)) | |
| 5 | dedth3h.4 | . . . 4 ⊢ ζ | |
| 6 | 3, 4, 5 | dedth2h 3705 | . . 3 ⊢ ((ψ ∧ χ) → τ) |
| 7 | 2, 6 | dedth 3704 | . 2 ⊢ (φ → ((ψ ∧ χ) → θ)) |
| 8 | 7 | 3impib 1149 | 1 ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ifcif 3663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
| This theorem is referenced by: dedth3v 3709 |
| Copyright terms: Public domain | W3C validator |