NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedth2h GIF version

Theorem dedth2h 3705
Description: Weak deduction theorem eliminating two hypotheses. This theorem is simpler to use than dedth2v 3708 but requires that each hypothesis has exactly one class variable. See also comments in dedth 3704. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
dedth2h.1 (A = if(φ, A, C) → (χθ))
dedth2h.2 (B = if(ψ, B, D) → (θτ))
dedth2h.3 τ
Assertion
Ref Expression
dedth2h ((φ ψ) → χ)

Proof of Theorem dedth2h
StepHypRef Expression
1 dedth2h.1 . . . 4 (A = if(φ, A, C) → (χθ))
21imbi2d 307 . . 3 (A = if(φ, A, C) → ((ψχ) ↔ (ψθ)))
3 dedth2h.2 . . . 4 (B = if(ψ, B, D) → (θτ))
4 dedth2h.3 . . . 4 τ
53, 4dedth 3704 . . 3 (ψθ)
62, 5dedth 3704 . 2 (φ → (ψχ))
76imp 418 1 ((φ ψ) → χ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by:  dedth3h  3706  dedth4h  3707  dedth2v  3708
  Copyright terms: Public domain W3C validator