New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eladdc | GIF version |
Description: Membership in cardinal addition. Theorem X.1.1 of [Rosser] p. 275. (Contributed by SF, 16-Jan-2015.) |
Ref | Expression |
---|---|
eladdc | ⊢ (A ∈ (M +c N) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . 2 ⊢ (A ∈ (M +c N) → A ∈ V) | |
2 | id 19 | . . . . . 6 ⊢ (A = (b ∪ c) → A = (b ∪ c)) | |
3 | vex 2862 | . . . . . . 7 ⊢ b ∈ V | |
4 | vex 2862 | . . . . . . 7 ⊢ c ∈ V | |
5 | 3, 4 | unex 4106 | . . . . . 6 ⊢ (b ∪ c) ∈ V |
6 | 2, 5 | syl6eqel 2441 | . . . . 5 ⊢ (A = (b ∪ c) → A ∈ V) |
7 | 6 | adantl 452 | . . . 4 ⊢ (((b ∩ c) = ∅ ∧ A = (b ∪ c)) → A ∈ V) |
8 | 7 | rexlimivw 2734 | . . 3 ⊢ (∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)) → A ∈ V) |
9 | 8 | rexlimivw 2734 | . 2 ⊢ (∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)) → A ∈ V) |
10 | eqeq1 2359 | . . . . 5 ⊢ (a = A → (a = (b ∪ c) ↔ A = (b ∪ c))) | |
11 | 10 | anbi2d 684 | . . . 4 ⊢ (a = A → (((b ∩ c) = ∅ ∧ a = (b ∪ c)) ↔ ((b ∩ c) = ∅ ∧ A = (b ∪ c)))) |
12 | 11 | 2rexbidv 2657 | . . 3 ⊢ (a = A → (∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ a = (b ∪ c)) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)))) |
13 | df-addc 4378 | . . 3 ⊢ (M +c N) = {a ∣ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ a = (b ∪ c))} | |
14 | 12, 13 | elab2g 2987 | . 2 ⊢ (A ∈ V → (A ∈ (M +c N) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)))) |
15 | 1, 9, 14 | pm5.21nii 342 | 1 ⊢ (A ∈ (M +c N) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2615 Vcvv 2859 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 +c cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-addc 4378 |
This theorem is referenced by: eladdci 4399 0nelsuc 4400 addcid1 4405 elsuc 4413 addcass 4415 addcnul1 4452 tfindi 4496 evenfinex 4503 oddfinex 4504 sfinltfin 4535 vfinspsslem1 4550 addcfnex 5824 ncdisjun 6136 ce0addcnnul 6179 addlec 6208 taddc 6229 letc 6231 addcdi 6250 |
Copyright terms: Public domain | W3C validator |