New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eladdc | GIF version |
Description: Membership in cardinal addition. Theorem X.1.1 of [Rosser] p. 275. (Contributed by SF, 16-Jan-2015.) |
Ref | Expression |
---|---|
eladdc | ⊢ (A ∈ (M +c N) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ (M +c N) → A ∈ V) | |
2 | id 19 | . . . . . 6 ⊢ (A = (b ∪ c) → A = (b ∪ c)) | |
3 | vex 2863 | . . . . . . 7 ⊢ b ∈ V | |
4 | vex 2863 | . . . . . . 7 ⊢ c ∈ V | |
5 | 3, 4 | unex 4107 | . . . . . 6 ⊢ (b ∪ c) ∈ V |
6 | 2, 5 | syl6eqel 2441 | . . . . 5 ⊢ (A = (b ∪ c) → A ∈ V) |
7 | 6 | adantl 452 | . . . 4 ⊢ (((b ∩ c) = ∅ ∧ A = (b ∪ c)) → A ∈ V) |
8 | 7 | rexlimivw 2735 | . . 3 ⊢ (∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)) → A ∈ V) |
9 | 8 | rexlimivw 2735 | . 2 ⊢ (∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)) → A ∈ V) |
10 | eqeq1 2359 | . . . . 5 ⊢ (a = A → (a = (b ∪ c) ↔ A = (b ∪ c))) | |
11 | 10 | anbi2d 684 | . . . 4 ⊢ (a = A → (((b ∩ c) = ∅ ∧ a = (b ∪ c)) ↔ ((b ∩ c) = ∅ ∧ A = (b ∪ c)))) |
12 | 11 | 2rexbidv 2658 | . . 3 ⊢ (a = A → (∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ a = (b ∪ c)) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)))) |
13 | df-addc 4379 | . . 3 ⊢ (M +c N) = {a ∣ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ a = (b ∪ c))} | |
14 | 12, 13 | elab2g 2988 | . 2 ⊢ (A ∈ V → (A ∈ (M +c N) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c)))) |
15 | 1, 9, 14 | pm5.21nii 342 | 1 ⊢ (A ∈ (M +c N) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) = ∅ ∧ A = (b ∪ c))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-addc 4379 |
This theorem is referenced by: eladdci 4400 0nelsuc 4401 addcid1 4406 elsuc 4414 addcass 4416 addcnul1 4453 tfindi 4497 evenfinex 4504 oddfinex 4505 sfinltfin 4536 vfinspsslem1 4551 addcfnex 5825 ncdisjun 6137 ce0addcnnul 6180 addlec 6209 taddc 6230 letc 6232 addcdi 6251 |
Copyright terms: Public domain | W3C validator |