NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eladdc GIF version

Theorem eladdc 4399
Description: Membership in cardinal addition. Theorem X.1.1 of [Rosser] p. 275. (Contributed by SF, 16-Jan-2015.)
Assertion
Ref Expression
eladdc (A (M +c N) ↔ b M c N ((bc) = A = (bc)))
Distinct variable groups:   A,b,c   M,b,c   N,b,c

Proof of Theorem eladdc
Dummy variable a is distinct from all other variables.
StepHypRef Expression
1 elex 2868 . 2 (A (M +c N) → A V)
2 id 19 . . . . . 6 (A = (bc) → A = (bc))
3 vex 2863 . . . . . . 7 b V
4 vex 2863 . . . . . . 7 c V
53, 4unex 4107 . . . . . 6 (bc) V
62, 5syl6eqel 2441 . . . . 5 (A = (bc) → A V)
76adantl 452 . . . 4 (((bc) = A = (bc)) → A V)
87rexlimivw 2735 . . 3 (c N ((bc) = A = (bc)) → A V)
98rexlimivw 2735 . 2 (b M c N ((bc) = A = (bc)) → A V)
10 eqeq1 2359 . . . . 5 (a = A → (a = (bc) ↔ A = (bc)))
1110anbi2d 684 . . . 4 (a = A → (((bc) = a = (bc)) ↔ ((bc) = A = (bc))))
12112rexbidv 2658 . . 3 (a = A → (b M c N ((bc) = a = (bc)) ↔ b M c N ((bc) = A = (bc))))
13 df-addc 4379 . . 3 (M +c N) = {a b M c N ((bc) = a = (bc))}
1412, 13elab2g 2988 . 2 (A V → (A (M +c N) ↔ b M c N ((bc) = A = (bc))))
151, 9, 14pm5.21nii 342 1 (A (M +c N) ↔ b M c N ((bc) = A = (bc)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  cun 3208  cin 3209  c0 3551   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-addc 4379
This theorem is referenced by:  eladdci  4400  0nelsuc  4401  addcid1  4406  elsuc  4414  addcass  4416  addcnul1  4453  tfindi  4497  evenfinex  4504  oddfinex  4505  sfinltfin  4536  vfinspsslem1  4551  addcfnex  5825  ncdisjun  6137  ce0addcnnul  6180  addlec  6209  taddc  6230  letc  6232  addcdi  6251
  Copyright terms: Public domain W3C validator