NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addccom GIF version

Theorem addccom 4407
Description: Cardinal sum commutes. Theorem X.1.9 of [Rosser] p. 276. (Contributed by SF, 15-Jan-2015.)
Assertion
Ref Expression
addccom (A +c B) = (B +c A)

Proof of Theorem addccom
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 incom 3449 . . . . . . 7 (yz) = (zy)
21eqeq1i 2360 . . . . . 6 ((yz) = ↔ (zy) = )
3 uncom 3409 . . . . . . 7 (yz) = (zy)
43eqeq2i 2363 . . . . . 6 (x = (yz) ↔ x = (zy))
52, 4anbi12i 678 . . . . 5 (((yz) = x = (yz)) ↔ ((zy) = x = (zy)))
652rexbii 2642 . . . 4 (y A z B ((yz) = x = (yz)) ↔ y A z B ((zy) = x = (zy)))
7 rexcom 2773 . . . 4 (y A z B ((zy) = x = (zy)) ↔ z B y A ((zy) = x = (zy)))
86, 7bitri 240 . . 3 (y A z B ((yz) = x = (yz)) ↔ z B y A ((zy) = x = (zy)))
98abbii 2466 . 2 {x y A z B ((yz) = x = (yz))} = {x z B y A ((zy) = x = (zy))}
10 df-addc 4379 . 2 (A +c B) = {x y A z B ((yz) = x = (yz))}
11 df-addc 4379 . 2 (B +c A) = {x z B y A ((zy) = x = (zy))}
129, 10, 113eqtr4i 2383 1 (A +c B) = (B +c A)
Colors of variables: wff setvar class
Syntax hints:   wa 358   = wceq 1642  {cab 2339  wrex 2616  cun 3208  cin 3209  c0 3551   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-addc 4379
This theorem is referenced by:  addcid2  4408  1cnnc  4409  addc32  4417  nncaddccl  4420  addcnnul  4454  ltfintr  4460  tfinltfinlem1  4501  oddtfin  4519  addccan1  4561  leaddc2  6216  nc0suc  6218  nmembers1lem3  6271  nchoicelem1  6290  nchoicelem7  6296  nchoicelem14  6303  nchoicelem17  6306
  Copyright terms: Public domain W3C validator