New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addccom | GIF version |
Description: Cardinal sum commutes. Theorem X.1.9 of [Rosser] p. 276. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
addccom | ⊢ (A +c B) = (B +c A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3448 | . . . . . . 7 ⊢ (y ∩ z) = (z ∩ y) | |
2 | 1 | eqeq1i 2360 | . . . . . 6 ⊢ ((y ∩ z) = ∅ ↔ (z ∩ y) = ∅) |
3 | uncom 3408 | . . . . . . 7 ⊢ (y ∪ z) = (z ∪ y) | |
4 | 3 | eqeq2i 2363 | . . . . . 6 ⊢ (x = (y ∪ z) ↔ x = (z ∪ y)) |
5 | 2, 4 | anbi12i 678 | . . . . 5 ⊢ (((y ∩ z) = ∅ ∧ x = (y ∪ z)) ↔ ((z ∩ y) = ∅ ∧ x = (z ∪ y))) |
6 | 5 | 2rexbii 2641 | . . . 4 ⊢ (∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z)) ↔ ∃y ∈ A ∃z ∈ B ((z ∩ y) = ∅ ∧ x = (z ∪ y))) |
7 | rexcom 2772 | . . . 4 ⊢ (∃y ∈ A ∃z ∈ B ((z ∩ y) = ∅ ∧ x = (z ∪ y)) ↔ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))) | |
8 | 6, 7 | bitri 240 | . . 3 ⊢ (∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z)) ↔ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))) |
9 | 8 | abbii 2465 | . 2 ⊢ {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z))} = {x ∣ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))} |
10 | df-addc 4378 | . 2 ⊢ (A +c B) = {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z))} | |
11 | df-addc 4378 | . 2 ⊢ (B +c A) = {x ∣ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))} | |
12 | 9, 10, 11 | 3eqtr4i 2383 | 1 ⊢ (A +c B) = (B +c A) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 {cab 2339 ∃wrex 2615 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 +c cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-addc 4378 |
This theorem is referenced by: addcid2 4407 1cnnc 4408 addc32 4416 nncaddccl 4419 addcnnul 4453 ltfintr 4459 tfinltfinlem1 4500 oddtfin 4518 addccan1 4560 leaddc2 6215 nc0suc 6217 nmembers1lem3 6270 nchoicelem1 6289 nchoicelem7 6295 nchoicelem14 6302 nchoicelem17 6305 |
Copyright terms: Public domain | W3C validator |