New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addccom | GIF version |
Description: Cardinal sum commutes. Theorem X.1.9 of [Rosser] p. 276. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
addccom | ⊢ (A +c B) = (B +c A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3449 | . . . . . . 7 ⊢ (y ∩ z) = (z ∩ y) | |
2 | 1 | eqeq1i 2360 | . . . . . 6 ⊢ ((y ∩ z) = ∅ ↔ (z ∩ y) = ∅) |
3 | uncom 3409 | . . . . . . 7 ⊢ (y ∪ z) = (z ∪ y) | |
4 | 3 | eqeq2i 2363 | . . . . . 6 ⊢ (x = (y ∪ z) ↔ x = (z ∪ y)) |
5 | 2, 4 | anbi12i 678 | . . . . 5 ⊢ (((y ∩ z) = ∅ ∧ x = (y ∪ z)) ↔ ((z ∩ y) = ∅ ∧ x = (z ∪ y))) |
6 | 5 | 2rexbii 2642 | . . . 4 ⊢ (∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z)) ↔ ∃y ∈ A ∃z ∈ B ((z ∩ y) = ∅ ∧ x = (z ∪ y))) |
7 | rexcom 2773 | . . . 4 ⊢ (∃y ∈ A ∃z ∈ B ((z ∩ y) = ∅ ∧ x = (z ∪ y)) ↔ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))) | |
8 | 6, 7 | bitri 240 | . . 3 ⊢ (∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z)) ↔ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))) |
9 | 8 | abbii 2466 | . 2 ⊢ {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z))} = {x ∣ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))} |
10 | df-addc 4379 | . 2 ⊢ (A +c B) = {x ∣ ∃y ∈ A ∃z ∈ B ((y ∩ z) = ∅ ∧ x = (y ∪ z))} | |
11 | df-addc 4379 | . 2 ⊢ (B +c A) = {x ∣ ∃z ∈ B ∃y ∈ A ((z ∩ y) = ∅ ∧ x = (z ∪ y))} | |
12 | 9, 10, 11 | 3eqtr4i 2383 | 1 ⊢ (A +c B) = (B +c A) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 {cab 2339 ∃wrex 2616 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-addc 4379 |
This theorem is referenced by: addcid2 4408 1cnnc 4409 addc32 4417 nncaddccl 4420 addcnnul 4454 ltfintr 4460 tfinltfinlem1 4501 oddtfin 4519 addccan1 4561 leaddc2 6216 nc0suc 6218 nmembers1lem3 6271 nchoicelem1 6290 nchoicelem7 6296 nchoicelem14 6303 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |