| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > r19.35 | GIF version | ||
| Description: Restricted quantifier version of Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| r19.35 | ⊢ (∃x ∈ A (φ → ψ) ↔ (∀x ∈ A φ → ∃x ∈ A ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 2747 | . . . 4 ⊢ (∀x ∈ A (φ ∧ ¬ ψ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ¬ ψ)) | |
| 2 | annim 414 | . . . . 5 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) | |
| 3 | 2 | ralbii 2639 | . . . 4 ⊢ (∀x ∈ A (φ ∧ ¬ ψ) ↔ ∀x ∈ A ¬ (φ → ψ)) |
| 4 | df-an 360 | . . . 4 ⊢ ((∀x ∈ A φ ∧ ∀x ∈ A ¬ ψ) ↔ ¬ (∀x ∈ A φ → ¬ ∀x ∈ A ¬ ψ)) | |
| 5 | 1, 3, 4 | 3bitr3i 266 | . . 3 ⊢ (∀x ∈ A ¬ (φ → ψ) ↔ ¬ (∀x ∈ A φ → ¬ ∀x ∈ A ¬ ψ)) |
| 6 | 5 | con2bii 322 | . 2 ⊢ ((∀x ∈ A φ → ¬ ∀x ∈ A ¬ ψ) ↔ ¬ ∀x ∈ A ¬ (φ → ψ)) |
| 7 | dfrex2 2628 | . . 3 ⊢ (∃x ∈ A ψ ↔ ¬ ∀x ∈ A ¬ ψ) | |
| 8 | 7 | imbi2i 303 | . 2 ⊢ ((∀x ∈ A φ → ∃x ∈ A ψ) ↔ (∀x ∈ A φ → ¬ ∀x ∈ A ¬ ψ)) |
| 9 | dfrex2 2628 | . 2 ⊢ (∃x ∈ A (φ → ψ) ↔ ¬ ∀x ∈ A ¬ (φ → ψ)) | |
| 10 | 6, 8, 9 | 3bitr4ri 269 | 1 ⊢ (∃x ∈ A (φ → ψ) ↔ (∀x ∈ A φ → ∃x ∈ A ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wral 2615 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: r19.36av 2760 r19.37 2761 r19.43 2767 r19.37zv 3647 r19.36zv 3651 |
| Copyright terms: Public domain | W3C validator |