New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sban | GIF version |
Description: Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sban | ⊢ ([y / x](φ ∧ ψ) ↔ ([y / x]φ ∧ [y / x]ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 2062 | . . 3 ⊢ ([y / x] ¬ (φ → ¬ ψ) ↔ ¬ [y / x](φ → ¬ ψ)) | |
2 | sbim 2065 | . . . 4 ⊢ ([y / x](φ → ¬ ψ) ↔ ([y / x]φ → [y / x] ¬ ψ)) | |
3 | sbn 2062 | . . . . 5 ⊢ ([y / x] ¬ ψ ↔ ¬ [y / x]ψ) | |
4 | 3 | imbi2i 303 | . . . 4 ⊢ (([y / x]φ → [y / x] ¬ ψ) ↔ ([y / x]φ → ¬ [y / x]ψ)) |
5 | 2, 4 | bitri 240 | . . 3 ⊢ ([y / x](φ → ¬ ψ) ↔ ([y / x]φ → ¬ [y / x]ψ)) |
6 | 1, 5 | xchbinx 301 | . 2 ⊢ ([y / x] ¬ (φ → ¬ ψ) ↔ ¬ ([y / x]φ → ¬ [y / x]ψ)) |
7 | df-an 360 | . . 3 ⊢ ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) | |
8 | 7 | sbbii 1653 | . 2 ⊢ ([y / x](φ ∧ ψ) ↔ [y / x] ¬ (φ → ¬ ψ)) |
9 | df-an 360 | . 2 ⊢ (([y / x]φ ∧ [y / x]ψ) ↔ ¬ ([y / x]φ → ¬ [y / x]ψ)) | |
10 | 6, 8, 9 | 3bitr4i 268 | 1 ⊢ ([y / x](φ ∧ ψ) ↔ ([y / x]φ ∧ [y / x]ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb3an 2070 sbbi 2071 sbabel 2516 cbvreu 2834 sbcan 3089 sbcang 3090 rmo3 3134 inab 3523 difab 3524 |
Copyright terms: Public domain | W3C validator |