| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfanOLD | GIF version | ||
| Description: Obsolete proof of nfan 1824 as of 2-Jan-2018. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfan.1 | ⊢ Ⅎxφ |
| nfan.2 | ⊢ Ⅎxψ |
| Ref | Expression |
|---|---|
| nfanOLD | ⊢ Ⅎx(φ ∧ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 360 | . 2 ⊢ ((φ ∧ ψ) ↔ ¬ (φ → ¬ ψ)) | |
| 2 | nfan.1 | . . . 4 ⊢ Ⅎxφ | |
| 3 | nfan.2 | . . . . 5 ⊢ Ⅎxψ | |
| 4 | 3 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ ψ |
| 5 | 2, 4 | nfim 1813 | . . 3 ⊢ Ⅎx(φ → ¬ ψ) |
| 6 | 5 | nfn 1793 | . 2 ⊢ Ⅎx ¬ (φ → ¬ ψ) |
| 7 | 1, 6 | nfxfr 1570 | 1 ⊢ Ⅎx(φ ∧ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |