New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-co | GIF version |
Description: Define the composition of two classes. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-co | ⊢ (A ∘ B) = {〈x, y〉 ∣ ∃z(xBz ∧ zAy)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | cB | . . 3 class B | |
3 | 1, 2 | ccom 4722 | . 2 class (A ∘ B) |
4 | vx | . . . . . . 7 setvar x | |
5 | 4 | cv 1641 | . . . . . 6 class x |
6 | vz | . . . . . . 7 setvar z | |
7 | 6 | cv 1641 | . . . . . 6 class z |
8 | 5, 7, 2 | wbr 4640 | . . . . 5 wff xBz |
9 | vy | . . . . . . 7 setvar y | |
10 | 9 | cv 1641 | . . . . . 6 class y |
11 | 7, 10, 1 | wbr 4640 | . . . . 5 wff zAy |
12 | 8, 11 | wa 358 | . . . 4 wff (xBz ∧ zAy) |
13 | 12, 6 | wex 1541 | . . 3 wff ∃z(xBz ∧ zAy) |
14 | 13, 4, 9 | copab 4623 | . 2 class {〈x, y〉 ∣ ∃z(xBz ∧ zAy)} |
15 | 3, 14 | wceq 1642 | 1 wff (A ∘ B) = {〈x, y〉 ∣ ∃z(xBz ∧ zAy)} |
Colors of variables: wff setvar class |
This definition is referenced by: dfco1 4749 coss1 4873 coss2 4874 nfco 4883 brco 4884 cnvco 4895 coundi 5083 coundir 5084 cores 5085 df2nd2 5112 funco 5143 composeex 5821 |
Copyright terms: Public domain | W3C validator |