Step | Hyp | Ref
| Expression |
1 | | unopab 4639 |
. . 3
⊢ ({〈x, y〉 ∣ ∃z(xBz ∧ zAy)} ∪
{〈x,
y〉 ∣ ∃z(xCz ∧ zAy)}) = {〈x, y〉 ∣ (∃z(xBz ∧ zAy) ∨ ∃z(xCz ∧ zAy))} |
2 | | brun 4693 |
. . . . . . . 8
⊢ (x(B ∪
C)z
↔ (xBz ∨ xCz)) |
3 | 2 | anbi1i 676 |
. . . . . . 7
⊢ ((x(B ∪
C)z
∧ zAy) ↔ ((xBz ∨ xCz) ∧ zAy)) |
4 | | andir 838 |
. . . . . . 7
⊢ (((xBz ∨ xCz) ∧ zAy) ↔ ((xBz ∧ zAy) ∨ (xCz ∧ zAy))) |
5 | 3, 4 | bitri 240 |
. . . . . 6
⊢ ((x(B ∪
C)z
∧ zAy) ↔ ((xBz ∧ zAy) ∨ (xCz ∧ zAy))) |
6 | 5 | exbii 1582 |
. . . . 5
⊢ (∃z(x(B ∪
C)z
∧ zAy) ↔ ∃z((xBz ∧ zAy) ∨ (xCz ∧ zAy))) |
7 | | 19.43 1605 |
. . . . 5
⊢ (∃z((xBz ∧ zAy) ∨ (xCz ∧ zAy)) ↔ (∃z(xBz ∧ zAy) ∨ ∃z(xCz ∧ zAy))) |
8 | 6, 7 | bitr2i 241 |
. . . 4
⊢ ((∃z(xBz ∧ zAy) ∨ ∃z(xCz ∧ zAy)) ↔ ∃z(x(B ∪
C)z
∧ zAy)) |
9 | 8 | opabbii 4627 |
. . 3
⊢ {〈x, y〉 ∣ (∃z(xBz ∧ zAy) ∨ ∃z(xCz ∧ zAy))} = {〈x, y〉 ∣ ∃z(x(B ∪ C)z ∧ zAy)} |
10 | 1, 9 | eqtri 2373 |
. 2
⊢ ({〈x, y〉 ∣ ∃z(xBz ∧ zAy)} ∪
{〈x,
y〉 ∣ ∃z(xCz ∧ zAy)}) = {〈x, y〉 ∣ ∃z(x(B ∪ C)z ∧ zAy)} |
11 | | df-co 4727 |
. . 3
⊢ (A ∘ B) = {〈x, y〉 ∣ ∃z(xBz ∧ zAy)} |
12 | | df-co 4727 |
. . 3
⊢ (A ∘ C) = {〈x, y〉 ∣ ∃z(xCz ∧ zAy)} |
13 | 11, 12 | uneq12i 3417 |
. 2
⊢ ((A ∘ B) ∪ (A
∘ C)) =
({〈x,
y〉 ∣ ∃z(xBz ∧ zAy)} ∪
{〈x,
y〉 ∣ ∃z(xCz ∧ zAy)}) |
14 | | df-co 4727 |
. 2
⊢ (A ∘ (B ∪ C)) =
{〈x,
y〉 ∣ ∃z(x(B ∪ C)z ∧ zAy)} |
15 | 10, 13, 14 | 3eqtr4ri 2384 |
1
⊢ (A ∘ (B ∪ C)) =
((A ∘
B) ∪ (A ∘ C)) |