New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfco | GIF version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
nfco.1 | ⊢ ℲxA |
nfco.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfco | ⊢ Ⅎx(A ∘ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4726 | . 2 ⊢ (A ∘ B) = {〈y, z〉 ∣ ∃w(yBw ∧ wAz)} | |
2 | nfcv 2489 | . . . . . 6 ⊢ Ⅎxy | |
3 | nfco.2 | . . . . . 6 ⊢ ℲxB | |
4 | nfcv 2489 | . . . . . 6 ⊢ Ⅎxw | |
5 | 2, 3, 4 | nfbr 4683 | . . . . 5 ⊢ Ⅎx yBw |
6 | nfco.1 | . . . . . 6 ⊢ ℲxA | |
7 | nfcv 2489 | . . . . . 6 ⊢ Ⅎxz | |
8 | 4, 6, 7 | nfbr 4683 | . . . . 5 ⊢ Ⅎx wAz |
9 | 5, 8 | nfan 1824 | . . . 4 ⊢ Ⅎx(yBw ∧ wAz) |
10 | 9 | nfex 1843 | . . 3 ⊢ Ⅎx∃w(yBw ∧ wAz) |
11 | 10 | nfopab 4627 | . 2 ⊢ Ⅎx{〈y, z〉 ∣ ∃w(yBw ∧ wAz)} |
12 | 1, 11 | nfcxfr 2486 | 1 ⊢ Ⅎx(A ∘ B) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 Ⅎwnfc 2476 {copab 4622 class class class wbr 4639 ∘ ccom 4721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-addc 4378 df-nnc 4379 df-phi 4565 df-op 4566 df-opab 4623 df-br 4640 df-co 4726 |
This theorem is referenced by: nffun 5130 |
Copyright terms: Public domain | W3C validator |