New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > brco | GIF version |
Description: Binary relation on a composition. (Contributed by set.mm contributors, 21-Sep-2004.) |
Ref | Expression |
---|---|
brco | ⊢ (A(C ∘ D)B ↔ ∃x(ADx ∧ xCB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . 2 ⊢ (A(C ∘ D)B → (A ∈ V ∧ B ∈ V)) | |
2 | brex 4690 | . . . . 5 ⊢ (ADx → (A ∈ V ∧ x ∈ V)) | |
3 | 2 | simpld 445 | . . . 4 ⊢ (ADx → A ∈ V) |
4 | brex 4690 | . . . . 5 ⊢ (xCB → (x ∈ V ∧ B ∈ V)) | |
5 | 4 | simprd 449 | . . . 4 ⊢ (xCB → B ∈ V) |
6 | 3, 5 | anim12i 549 | . . 3 ⊢ ((ADx ∧ xCB) → (A ∈ V ∧ B ∈ V)) |
7 | 6 | exlimiv 1634 | . 2 ⊢ (∃x(ADx ∧ xCB) → (A ∈ V ∧ B ∈ V)) |
8 | breq1 4643 | . . . . 5 ⊢ (y = A → (yDx ↔ ADx)) | |
9 | 8 | anbi1d 685 | . . . 4 ⊢ (y = A → ((yDx ∧ xCz) ↔ (ADx ∧ xCz))) |
10 | 9 | exbidv 1626 | . . 3 ⊢ (y = A → (∃x(yDx ∧ xCz) ↔ ∃x(ADx ∧ xCz))) |
11 | breq2 4644 | . . . . 5 ⊢ (z = B → (xCz ↔ xCB)) | |
12 | 11 | anbi2d 684 | . . . 4 ⊢ (z = B → ((ADx ∧ xCz) ↔ (ADx ∧ xCB))) |
13 | 12 | exbidv 1626 | . . 3 ⊢ (z = B → (∃x(ADx ∧ xCz) ↔ ∃x(ADx ∧ xCB))) |
14 | df-co 4727 | . . 3 ⊢ (C ∘ D) = {〈y, z〉 ∣ ∃x(yDx ∧ xCz)} | |
15 | 10, 13, 14 | brabg 4707 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A(C ∘ D)B ↔ ∃x(ADx ∧ xCB))) |
16 | 1, 7, 15 | pm5.21nii 342 | 1 ⊢ (A(C ∘ D)B ↔ ∃x(ADx ∧ xCB)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 class class class wbr 4640 ∘ ccom 4722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 |
This theorem is referenced by: opelco 4885 cnvco 4895 dmcoss 4972 dmcosseq 4974 cotr 5027 resco 5086 imaco 5087 rnco 5088 coi1 5095 coass 5098 dmfco 5382 brco1st 5778 brco2nd 5779 trtxp 5782 brtxp 5784 addcfnex 5825 qrpprod 5837 brpprod 5840 fnfullfunlem1 5857 clos1ex 5877 xpassenlem 6057 xpassen 6058 enpw1lem1 6062 enmap2lem1 6064 enmap1lem1 6070 lecex 6116 ceex 6175 nnltp1clem1 6262 addccan2nclem1 6264 addccan2nclem2 6265 nncdiv3lem1 6276 nchoicelem10 6299 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |