NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  brco GIF version

Theorem brco 4884
Description: Binary relation on a composition. (Contributed by set.mm contributors, 21-Sep-2004.)
Assertion
Ref Expression
brco (A(C D)Bx(ADx xCB))
Distinct variable groups:   x,A   x,B   x,C   x,D

Proof of Theorem brco
Dummy variables y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brex 4690 . 2 (A(C D)B → (A V B V))
2 brex 4690 . . . . 5 (ADx → (A V x V))
32simpld 445 . . . 4 (ADxA V)
4 brex 4690 . . . . 5 (xCB → (x V B V))
54simprd 449 . . . 4 (xCBB V)
63, 5anim12i 549 . . 3 ((ADx xCB) → (A V B V))
76exlimiv 1634 . 2 (x(ADx xCB) → (A V B V))
8 breq1 4643 . . . . 5 (y = A → (yDxADx))
98anbi1d 685 . . . 4 (y = A → ((yDx xCz) ↔ (ADx xCz)))
109exbidv 1626 . . 3 (y = A → (x(yDx xCz) ↔ x(ADx xCz)))
11 breq2 4644 . . . . 5 (z = B → (xCzxCB))
1211anbi2d 684 . . . 4 (z = B → ((ADx xCz) ↔ (ADx xCB)))
1312exbidv 1626 . . 3 (z = B → (x(ADx xCz) ↔ x(ADx xCB)))
14 df-co 4727 . . 3 (C D) = {y, z x(yDx xCz)}
1510, 13, 14brabg 4707 . 2 ((A V B V) → (A(C D)Bx(ADx xCB)))
161, 7, 15pm5.21nii 342 1 (A(C D)Bx(ADx xCB))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860   class class class wbr 4640   ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727
This theorem is referenced by:  opelco  4885  cnvco  4895  dmcoss  4972  dmcosseq  4974  cotr  5027  resco  5086  imaco  5087  rnco  5088  coi1  5095  coass  5098  dmfco  5382  brco1st  5778  brco2nd  5779  trtxp  5782  brtxp  5784  addcfnex  5825  qrpprod  5837  brpprod  5840  fnfullfunlem1  5857  clos1ex  5877  xpassenlem  6057  xpassen  6058  enpw1lem1  6062  enmap2lem1  6064  enmap1lem1  6070  lecex  6116  ceex  6175  nnltp1clem1  6262  addccan2nclem1  6264  addccan2nclem2  6265  nncdiv3lem1  6276  nchoicelem10  6299  nchoicelem16  6305
  Copyright terms: Public domain W3C validator