NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfevenfin2 GIF version

Theorem dfevenfin2 4513
Description: Alternate definition of even number. (Contributed by SF, 25-Jan-2015.)
Assertion
Ref Expression
dfevenfin2 Evenfin = {x n Nn (x = (n +c n) (n +c n) ≠ )}
Distinct variable group:   x,n

Proof of Theorem dfevenfin2
StepHypRef Expression
1 df-evenfin 4445 . 2 Evenfin = {x (n Nn x = (n +c n) x)}
2 r19.41v 2765 . . . 4 (n Nn (x = (n +c n) x) ↔ (n Nn x = (n +c n) x))
3 neeq1 2525 . . . . . 6 (x = (n +c n) → (x ↔ (n +c n) ≠ ))
43pm5.32i 618 . . . . 5 ((x = (n +c n) x) ↔ (x = (n +c n) (n +c n) ≠ ))
54rexbii 2640 . . . 4 (n Nn (x = (n +c n) x) ↔ n Nn (x = (n +c n) (n +c n) ≠ ))
62, 5bitr3i 242 . . 3 ((n Nn x = (n +c n) x) ↔ n Nn (x = (n +c n) (n +c n) ≠ ))
76abbii 2466 . 2 {x (n Nn x = (n +c n) x)} = {x n Nn (x = (n +c n) (n +c n) ≠ )}
81, 7eqtri 2373 1 Evenfin = {x n Nn (x = (n +c n) (n +c n) ≠ )}
Colors of variables: wff setvar class
Syntax hints:   wa 358   = wceq 1642  {cab 2339  wne 2517  wrex 2616  c0 3551   Nn cnnc 4374   +c cplc 4376   Evenfin cevenfin 4437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-ne 2519  df-rex 2621  df-evenfin 4445
This theorem is referenced by:  evenodddisj  4517
  Copyright terms: Public domain W3C validator