New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfevenfin2 | GIF version |
Description: Alternate definition of even number. (Contributed by SF, 25-Jan-2015.) |
Ref | Expression |
---|---|
dfevenfin2 | ⊢ Evenfin = {x ∣ ∃n ∈ Nn (x = (n +c n) ∧ (n +c n) ≠ ∅)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evenfin 4445 | . 2 ⊢ Evenfin = {x ∣ (∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅)} | |
2 | r19.41v 2765 | . . . 4 ⊢ (∃n ∈ Nn (x = (n +c n) ∧ x ≠ ∅) ↔ (∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅)) | |
3 | neeq1 2525 | . . . . . 6 ⊢ (x = (n +c n) → (x ≠ ∅ ↔ (n +c n) ≠ ∅)) | |
4 | 3 | pm5.32i 618 | . . . . 5 ⊢ ((x = (n +c n) ∧ x ≠ ∅) ↔ (x = (n +c n) ∧ (n +c n) ≠ ∅)) |
5 | 4 | rexbii 2640 | . . . 4 ⊢ (∃n ∈ Nn (x = (n +c n) ∧ x ≠ ∅) ↔ ∃n ∈ Nn (x = (n +c n) ∧ (n +c n) ≠ ∅)) |
6 | 2, 5 | bitr3i 242 | . . 3 ⊢ ((∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅) ↔ ∃n ∈ Nn (x = (n +c n) ∧ (n +c n) ≠ ∅)) |
7 | 6 | abbii 2466 | . 2 ⊢ {x ∣ (∃n ∈ Nn x = (n +c n) ∧ x ≠ ∅)} = {x ∣ ∃n ∈ Nn (x = (n +c n) ∧ (n +c n) ≠ ∅)} |
8 | 1, 7 | eqtri 2373 | 1 ⊢ Evenfin = {x ∣ ∃n ∈ Nn (x = (n +c n) ∧ (n +c n) ≠ ∅)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 {cab 2339 ≠ wne 2517 ∃wrex 2616 ∅c0 3551 Nn cnnc 4374 +c cplc 4376 Evenfin cevenfin 4437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-ne 2519 df-rex 2621 df-evenfin 4445 |
This theorem is referenced by: evenodddisj 4517 |
Copyright terms: Public domain | W3C validator |