Detailed syntax breakdown of Definition df-oddfin
Step | Hyp | Ref
| Expression |
1 | | coddfin 4438 |
. 2
class Oddfin |
2 | | vx |
. . . . . . 7
setvar x |
3 | 2 | cv 1641 |
. . . . . 6
class x |
4 | | vn |
. . . . . . . . 9
setvar n |
5 | 4 | cv 1641 |
. . . . . . . 8
class n |
6 | 5, 5 | cplc 4376 |
. . . . . . 7
class (n +c n) |
7 | | c1c 4135 |
. . . . . . 7
class 1c |
8 | 6, 7 | cplc 4376 |
. . . . . 6
class ((n +c n) +c
1c) |
9 | 3, 8 | wceq 1642 |
. . . . 5
wff x =
((n +c n) +c
1c) |
10 | | cnnc 4374 |
. . . . 5
class Nn |
11 | 9, 4, 10 | wrex 2616 |
. . . 4
wff ∃n ∈ Nn x = ((n
+c n)
+c 1c) |
12 | | c0 3551 |
. . . . 5
class ∅ |
13 | 3, 12 | wne 2517 |
. . . 4
wff x
≠ ∅ |
14 | 11, 13 | wa 358 |
. . 3
wff (∃n ∈ Nn x = ((n
+c n)
+c 1c) ∧
x ≠ ∅) |
15 | 14, 2 | cab 2339 |
. 2
class {x ∣ (∃n ∈ Nn x = ((n
+c n)
+c 1c) ∧
x ≠ ∅)} |
16 | 1, 15 | wceq 1642 |
1
wff Oddfin = {x ∣ (∃n ∈ Nn x = ((n
+c n)
+c 1c) ∧
x ≠ ∅)} |