| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqeq1 2359 | 
. . . . . . . 8
⊢ (x = A →
(x = (m
+c m) ↔ A = (m
+c m))) | 
| 2 | 1 | rexbidv 2636 | 
. . . . . . 7
⊢ (x = A →
(∃m
∈ Nn x = (m
+c m) ↔ ∃m ∈ Nn A = (m
+c m))) | 
| 3 |   | neeq1 2525 | 
. . . . . . 7
⊢ (x = A →
(x ≠ ∅ ↔ A
≠ ∅)) | 
| 4 | 2, 3 | anbi12d 691 | 
. . . . . 6
⊢ (x = A →
((∃m
∈ Nn x = (m
+c m) ∧ x ≠ ∅) ↔ (∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅))) | 
| 5 |   | df-evenfin 4445 | 
. . . . . 6
⊢  Evenfin = {x ∣ (∃m ∈ Nn x = (m
+c m) ∧ x ≠ ∅)} | 
| 6 | 4, 5 | elab2g 2988 | 
. . . . 5
⊢ (A ∈ Evenfin → (A ∈ Evenfin ↔ (∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅))) | 
| 7 | 6 | ibi 232 | 
. . . 4
⊢ (A ∈ Evenfin → (∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅)) | 
| 8 |   | addceq1 4384 | 
. . . . . 6
⊢ (A = (m
+c m) → (A +c 1c) =
((m +c m) +c
1c)) | 
| 9 | 8 | reximi 2722 | 
. . . . 5
⊢ (∃m ∈ Nn A = (m
+c m) → ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c)) | 
| 10 | 9 | adantr 451 | 
. . . 4
⊢ ((∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅) → ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c)) | 
| 11 | 7, 10 | syl 15 | 
. . 3
⊢ (A ∈ Evenfin → ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c)) | 
| 12 | 11 | anim1i 551 | 
. 2
⊢ ((A ∈ Evenfin ∧
(A +c
1c) ≠ ∅) → (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅)) | 
| 13 |   | 1cex 4143 | 
. . . . 5
⊢
1c ∈
V | 
| 14 |   | addcexg 4394 | 
. . . . 5
⊢ ((A ∈ Evenfin ∧
1c ∈ V) → (A +c 1c) ∈ V) | 
| 15 | 13, 14 | mpan2 652 | 
. . . 4
⊢ (A ∈ Evenfin → (A +c 1c) ∈ V) | 
| 16 |   | eqeq1 2359 | 
. . . . . . 7
⊢ (x = (A
+c 1c) → (x = ((m
+c m)
+c 1c) ↔ (A +c 1c) =
((m +c m) +c
1c))) | 
| 17 | 16 | rexbidv 2636 | 
. . . . . 6
⊢ (x = (A
+c 1c) → (∃m ∈ Nn x = ((m
+c m)
+c 1c) ↔ ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c))) | 
| 18 |   | neeq1 2525 | 
. . . . . 6
⊢ (x = (A
+c 1c) → (x ≠ ∅ ↔
(A +c
1c) ≠ ∅)) | 
| 19 | 17, 18 | anbi12d 691 | 
. . . . 5
⊢ (x = (A
+c 1c) → ((∃m ∈ Nn x = ((m
+c m)
+c 1c) ∧
x ≠ ∅) ↔ (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) | 
| 20 |   | df-oddfin 4446 | 
. . . . 5
⊢  Oddfin = {x ∣ (∃m ∈ Nn x = ((m
+c m)
+c 1c) ∧
x ≠ ∅)} | 
| 21 | 19, 20 | elab2g 2988 | 
. . . 4
⊢ ((A +c 1c) ∈ V → ((A
+c 1c) ∈
Oddfin ↔ (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) | 
| 22 | 15, 21 | syl 15 | 
. . 3
⊢ (A ∈ Evenfin → ((A +c 1c) ∈ Oddfin
↔ (∃m ∈ Nn (A
+c 1c) = ((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) | 
| 23 | 22 | adantr 451 | 
. 2
⊢ ((A ∈ Evenfin ∧
(A +c
1c) ≠ ∅) →
((A +c
1c) ∈ Oddfin ↔ (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) | 
| 24 | 12, 23 | mpbird 223 | 
1
⊢ ((A ∈ Evenfin ∧
(A +c
1c) ≠ ∅) →
(A +c
1c) ∈ Oddfin ) |