Step | Hyp | Ref
| Expression |
1 | | eqeq1 2359 |
. . . . . . . 8
⊢ (x = A →
(x = (m
+c m) ↔ A = (m
+c m))) |
2 | 1 | rexbidv 2636 |
. . . . . . 7
⊢ (x = A →
(∃m
∈ Nn x = (m
+c m) ↔ ∃m ∈ Nn A = (m
+c m))) |
3 | | neeq1 2525 |
. . . . . . 7
⊢ (x = A →
(x ≠ ∅ ↔ A
≠ ∅)) |
4 | 2, 3 | anbi12d 691 |
. . . . . 6
⊢ (x = A →
((∃m
∈ Nn x = (m
+c m) ∧ x ≠ ∅) ↔ (∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅))) |
5 | | df-evenfin 4445 |
. . . . . 6
⊢ Evenfin = {x ∣ (∃m ∈ Nn x = (m
+c m) ∧ x ≠ ∅)} |
6 | 4, 5 | elab2g 2988 |
. . . . 5
⊢ (A ∈ Evenfin → (A ∈ Evenfin ↔ (∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅))) |
7 | 6 | ibi 232 |
. . . 4
⊢ (A ∈ Evenfin → (∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅)) |
8 | | addceq1 4384 |
. . . . . 6
⊢ (A = (m
+c m) → (A +c 1c) =
((m +c m) +c
1c)) |
9 | 8 | reximi 2722 |
. . . . 5
⊢ (∃m ∈ Nn A = (m
+c m) → ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c)) |
10 | 9 | adantr 451 |
. . . 4
⊢ ((∃m ∈ Nn A = (m
+c m) ∧ A ≠ ∅) → ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c)) |
11 | 7, 10 | syl 15 |
. . 3
⊢ (A ∈ Evenfin → ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c)) |
12 | 11 | anim1i 551 |
. 2
⊢ ((A ∈ Evenfin ∧
(A +c
1c) ≠ ∅) → (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅)) |
13 | | 1cex 4143 |
. . . . 5
⊢
1c ∈
V |
14 | | addcexg 4394 |
. . . . 5
⊢ ((A ∈ Evenfin ∧
1c ∈ V) → (A +c 1c) ∈ V) |
15 | 13, 14 | mpan2 652 |
. . . 4
⊢ (A ∈ Evenfin → (A +c 1c) ∈ V) |
16 | | eqeq1 2359 |
. . . . . . 7
⊢ (x = (A
+c 1c) → (x = ((m
+c m)
+c 1c) ↔ (A +c 1c) =
((m +c m) +c
1c))) |
17 | 16 | rexbidv 2636 |
. . . . . 6
⊢ (x = (A
+c 1c) → (∃m ∈ Nn x = ((m
+c m)
+c 1c) ↔ ∃m ∈ Nn (A +c 1c) =
((m +c m) +c
1c))) |
18 | | neeq1 2525 |
. . . . . 6
⊢ (x = (A
+c 1c) → (x ≠ ∅ ↔
(A +c
1c) ≠ ∅)) |
19 | 17, 18 | anbi12d 691 |
. . . . 5
⊢ (x = (A
+c 1c) → ((∃m ∈ Nn x = ((m
+c m)
+c 1c) ∧
x ≠ ∅) ↔ (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) |
20 | | df-oddfin 4446 |
. . . . 5
⊢ Oddfin = {x ∣ (∃m ∈ Nn x = ((m
+c m)
+c 1c) ∧
x ≠ ∅)} |
21 | 19, 20 | elab2g 2988 |
. . . 4
⊢ ((A +c 1c) ∈ V → ((A
+c 1c) ∈
Oddfin ↔ (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) |
22 | 15, 21 | syl 15 |
. . 3
⊢ (A ∈ Evenfin → ((A +c 1c) ∈ Oddfin
↔ (∃m ∈ Nn (A
+c 1c) = ((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) |
23 | 22 | adantr 451 |
. 2
⊢ ((A ∈ Evenfin ∧
(A +c
1c) ≠ ∅) →
((A +c
1c) ∈ Oddfin ↔ (∃m ∈ Nn (A +c 1c) =
((m +c m) +c 1c) ∧ (A
+c 1c) ≠ ∅))) |
24 | 12, 23 | mpbird 223 |
1
⊢ ((A ∈ Evenfin ∧
(A +c
1c) ≠ ∅) →
(A +c
1c) ∈ Oddfin ) |