![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > df-mpt | GIF version |
Description: Define maps-to notation for defining a function via a rule. Read as "the function defined by the map from x (in A) to B(x)." The class expression B is the value of the function at x and normally contains the variable x. Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-mpt | ⊢ (x ∈ A ↦ B) = {〈x, y〉 ∣ (x ∈ A ∧ y = B)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar x | |
2 | cA | . . 3 class A | |
3 | cB | . . 3 class B | |
4 | 1, 2, 3 | cmpt 5651 | . 2 class (x ∈ A ↦ B) |
5 | 1 | cv 1641 | . . . . 5 class x |
6 | 5, 2 | wcel 1710 | . . . 4 wff x ∈ A |
7 | vy | . . . . . 6 setvar y | |
8 | 7 | cv 1641 | . . . . 5 class y |
9 | 8, 3 | wceq 1642 | . . . 4 wff y = B |
10 | 6, 9 | wa 358 | . . 3 wff (x ∈ A ∧ y = B) |
11 | 10, 1, 7 | copab 4622 | . 2 class {〈x, y〉 ∣ (x ∈ A ∧ y = B)} |
12 | 4, 11 | wceq 1642 | 1 wff (x ∈ A ↦ B) = {〈x, y〉 ∣ (x ∈ A ∧ y = B)} |
Colors of variables: wff setvar class |
This definition is referenced by: mpteq12f 5655 nfmpt 5671 nfmpt1 5672 cbvmpt 5676 fconstmpt 5681 mptpreima 5682 dmmpt 5683 dmmptss 5685 rnmpt 5686 funmpt 5687 mptfng 5688 resmpt 5696 fvmptg 5698 dffn5v 5706 mpt2mptx 5708 mptv 5718 mptresid 5720 f1od 5726 releqmpt 5808 enmap2lem1 6063 enmap1lem1 6069 scancan 6331 |
Copyright terms: Public domain | W3C validator |