NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mptpreima GIF version

Theorem mptpreima 5683
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpt2.1 F = (x A B)
Assertion
Ref Expression
mptpreima (FC) = {x A B C}
Distinct variable group:   x,C
Allowed substitution hints:   A(x)   B(x)   F(x)

Proof of Theorem mptpreima
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 dmmpt2.1 . . . . . 6 F = (x A B)
2 df-mpt 5653 . . . . . 6 (x A B) = {x, y (x A y = B)}
31, 2eqtri 2373 . . . . 5 F = {x, y (x A y = B)}
43cnveqi 4888 . . . 4 F = {x, y (x A y = B)}
5 cnvopab 5031 . . . 4 {x, y (x A y = B)} = {y, x (x A y = B)}
64, 5eqtri 2373 . . 3 F = {y, x (x A y = B)}
76imaeq1i 4940 . 2 (FC) = ({y, x (x A y = B)} “ C)
8 dfima3 4952 . . 3 ({y, x (x A y = B)} “ C) = ran ({y, x (x A y = B)} C)
9 resopab 5000 . . . . 5 ({y, x (x A y = B)} C) = {y, x (y C (x A y = B))}
109rneqi 4958 . . . 4 ran ({y, x (x A y = B)} C) = ran {y, x (y C (x A y = B))}
11 ancom 437 . . . . . . . . 9 ((y C (x A y = B)) ↔ ((x A y = B) y C))
12 anass 630 . . . . . . . . 9 (((x A y = B) y C) ↔ (x A (y = B y C)))
1311, 12bitri 240 . . . . . . . 8 ((y C (x A y = B)) ↔ (x A (y = B y C)))
1413exbii 1582 . . . . . . 7 (y(y C (x A y = B)) ↔ y(x A (y = B y C)))
15 19.42v 1905 . . . . . . . 8 (y(x A (y = B y C)) ↔ (x A y(y = B y C)))
16 df-clel 2349 . . . . . . . . . 10 (B Cy(y = B y C))
1716bicomi 193 . . . . . . . . 9 (y(y = B y C) ↔ B C)
1817anbi2i 675 . . . . . . . 8 ((x A y(y = B y C)) ↔ (x A B C))
1915, 18bitri 240 . . . . . . 7 (y(x A (y = B y C)) ↔ (x A B C))
2014, 19bitri 240 . . . . . 6 (y(y C (x A y = B)) ↔ (x A B C))
2120abbii 2466 . . . . 5 {x y(y C (x A y = B))} = {x (x A B C)}
22 rnopab 4968 . . . . 5 ran {y, x (y C (x A y = B))} = {x y(y C (x A y = B))}
23 df-rab 2624 . . . . 5 {x A B C} = {x (x A B C)}
2421, 22, 233eqtr4i 2383 . . . 4 ran {y, x (y C (x A y = B))} = {x A B C}
2510, 24eqtri 2373 . . 3 ran ({y, x (x A y = B)} C) = {x A B C}
268, 25eqtri 2373 . 2 ({y, x (x A y = B)} “ C) = {x A B C}
277, 26eqtri 2373 1 (FC) = {x A B C}
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  {crab 2619  {copab 4623  cima 4723  ccnv 4772  ran crn 4774   cres 4775   cmpt 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-ima 4728  df-xp 4785  df-cnv 4786  df-rn 4787  df-res 4789  df-mpt 5653
This theorem is referenced by:  fmpt  5693
  Copyright terms: Public domain W3C validator