Step | Hyp | Ref
| Expression |
1 | | df-mpt 5653 |
. . 3
⊢ (s ∈ (G ↑m A) ↦ (s ∘ ◡r)) =
{〈s,
x〉 ∣ (s ∈ (G
↑m A) ∧ x = (s ∘ ◡r))} |
2 | | enmap2lem1.1 |
. . 3
⊢ W = (s ∈ (G
↑m A) ↦ (s ∘ ◡r)) |
3 | | opelres 4951 |
. . . . 5
⊢ (〈s, x〉 ∈ (((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↾ (G
↑m A)) ↔ (〈s, x〉 ∈ ((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ∧ s ∈ (G
↑m A))) |
4 | | trtxp 5782 |
. . . . . . . . . 10
⊢ (p(((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd )〈s, x〉 ↔ (p((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st )s ∧ p2nd x)) |
5 | | brco 4884 |
. . . . . . . . . . . 12
⊢ (p((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st )s ↔ ∃x(p1st x ∧ x(1st ∩ ((◡2nd “ {◡r})
× V))s)) |
6 | | ancom 437 |
. . . . . . . . . . . . . 14
⊢ ((p1st x ∧ x(1st ∩ ((◡2nd “ {◡r})
× V))s) ↔ (x(1st ∩ ((◡2nd “ {◡r})
× V))s ∧ p1st x)) |
7 | | brin 4694 |
. . . . . . . . . . . . . . . 16
⊢ (x(1st ∩ ((◡2nd “ {◡r})
× V))s ↔ (x1st s ∧ x((◡2nd “ {◡r})
× V)s)) |
8 | | vex 2863 |
. . . . . . . . . . . . . . . . . . 19
⊢ s ∈
V |
9 | | brxp 4813 |
. . . . . . . . . . . . . . . . . . 19
⊢ (x((◡2nd “ {◡r})
× V)s ↔ (x ∈ (◡2nd “ {◡r})
∧ s ∈ V)) |
10 | 8, 9 | mpbiran2 885 |
. . . . . . . . . . . . . . . . . 18
⊢ (x((◡2nd “ {◡r})
× V)s ↔ x ∈ (◡2nd “ {◡r})) |
11 | | eliniseg 5021 |
. . . . . . . . . . . . . . . . . 18
⊢ (x ∈ (◡2nd “ {◡r})
↔ x2nd ◡r) |
12 | 10, 11 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (x((◡2nd “ {◡r})
× V)s ↔ x2nd ◡r) |
13 | 12 | anbi2i 675 |
. . . . . . . . . . . . . . . 16
⊢ ((x1st s ∧ x((◡2nd “ {◡r})
× V)s) ↔ (x1st s ∧ x2nd ◡r)) |
14 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ r ∈
V |
15 | 14 | cnvex 5103 |
. . . . . . . . . . . . . . . . 17
⊢ ◡r ∈ V |
16 | 8, 15 | op1st2nd 5791 |
. . . . . . . . . . . . . . . 16
⊢ ((x1st s ∧ x2nd ◡r)
↔ x = 〈s, ◡r〉) |
17 | 7, 13, 16 | 3bitri 262 |
. . . . . . . . . . . . . . 15
⊢ (x(1st ∩ ((◡2nd “ {◡r})
× V))s ↔ x = 〈s, ◡r〉) |
18 | 17 | anbi1i 676 |
. . . . . . . . . . . . . 14
⊢ ((x(1st ∩ ((◡2nd “ {◡r})
× V))s ∧ p1st x) ↔ (x =
〈s, ◡r〉 ∧ p1st x)) |
19 | 6, 18 | bitri 240 |
. . . . . . . . . . . . 13
⊢ ((p1st x ∧ x(1st ∩ ((◡2nd “ {◡r})
× V))s) ↔ (x = 〈s, ◡r〉 ∧ p1st x)) |
20 | 19 | exbii 1582 |
. . . . . . . . . . . 12
⊢ (∃x(p1st x ∧ x(1st ∩ ((◡2nd “ {◡r})
× V))s) ↔ ∃x(x = 〈s, ◡r〉 ∧ p1st x)) |
21 | 8, 15 | opex 4589 |
. . . . . . . . . . . . 13
⊢ 〈s, ◡r〉 ∈
V |
22 | | breq2 4644 |
. . . . . . . . . . . . 13
⊢ (x = 〈s, ◡r〉 →
(p1st x ↔ p1st 〈s, ◡r〉)) |
23 | 21, 22 | ceqsexv 2895 |
. . . . . . . . . . . 12
⊢ (∃x(x = 〈s, ◡r〉 ∧ p1st x) ↔ p1st 〈s, ◡r〉) |
24 | 5, 20, 23 | 3bitri 262 |
. . . . . . . . . . 11
⊢ (p((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st )s ↔ p1st 〈s, ◡r〉) |
25 | 24 | anbi1i 676 |
. . . . . . . . . 10
⊢ ((p((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st )s ∧ p2nd x) ↔ (p1st 〈s, ◡r〉 ∧ p2nd x)) |
26 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
27 | 21, 26 | op1st2nd 5791 |
. . . . . . . . . 10
⊢ ((p1st 〈s, ◡r〉 ∧ p2nd x) ↔ p =
〈〈s, ◡r〉, x〉) |
28 | 4, 25, 27 | 3bitri 262 |
. . . . . . . . 9
⊢ (p(((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd )〈s, x〉 ↔ p =
〈〈s, ◡r〉, x〉) |
29 | 28 | rexbii 2640 |
. . . . . . . 8
⊢ (∃p ∈ Compose p(((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd )〈s, x〉 ↔ ∃p ∈ Compose p = 〈〈s, ◡r〉, x〉) |
30 | | elima 4755 |
. . . . . . . 8
⊢ (〈s, x〉 ∈ ((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↔ ∃p ∈ Compose p(((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd )〈s, x〉) |
31 | | risset 2662 |
. . . . . . . 8
⊢ (〈〈s, ◡r〉, x〉 ∈ Compose ↔ ∃p ∈ Compose p = 〈〈s, ◡r〉, x〉) |
32 | 29, 30, 31 | 3bitr4i 268 |
. . . . . . 7
⊢ (〈s, x〉 ∈ ((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↔ 〈〈s, ◡r〉, x〉 ∈ Compose
) |
33 | | df-br 4641 |
. . . . . . 7
⊢ (〈s, ◡r〉 Compose x ↔ 〈〈s, ◡r〉, x〉 ∈ Compose ) |
34 | | brcomposeg 5820 |
. . . . . . . . 9
⊢ ((s ∈ V ∧ ◡r ∈ V) →
(〈s,
◡r〉 Compose x ↔
(s ∘
◡r)
= x)) |
35 | 8, 15, 34 | mp2an 653 |
. . . . . . . 8
⊢ (〈s, ◡r〉 Compose x ↔ (s
∘ ◡r) =
x) |
36 | | eqcom 2355 |
. . . . . . . 8
⊢ ((s ∘ ◡r) =
x ↔ x = (s ∘ ◡r)) |
37 | 35, 36 | bitri 240 |
. . . . . . 7
⊢ (〈s, ◡r〉 Compose x ↔ x =
(s ∘
◡r)) |
38 | 32, 33, 37 | 3bitr2i 264 |
. . . . . 6
⊢ (〈s, x〉 ∈ ((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↔ x = (s ∘ ◡r)) |
39 | 38 | anbi2ci 677 |
. . . . 5
⊢ ((〈s, x〉 ∈ ((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ∧ s ∈ (G
↑m A)) ↔
(s ∈
(G ↑m A) ∧ x = (s ∘ ◡r))) |
40 | 3, 39 | bitri 240 |
. . . 4
⊢ (〈s, x〉 ∈ (((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↾ (G
↑m A)) ↔
(s ∈
(G ↑m A) ∧ x = (s ∘ ◡r))) |
41 | 40 | opabbi2i 4867 |
. . 3
⊢ (((((1st
∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↾ (G
↑m A)) = {〈s, x〉 ∣ (s ∈ (G
↑m A) ∧ x = (s ∘ ◡r))} |
42 | 1, 2, 41 | 3eqtr4i 2383 |
. 2
⊢ W = (((((1st ∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↾ (G
↑m A)) |
43 | | 1stex 4740 |
. . . . . . 7
⊢ 1st
∈ V |
44 | | 2ndex 5113 |
. . . . . . . . . 10
⊢ 2nd
∈ V |
45 | 44 | cnvex 5103 |
. . . . . . . . 9
⊢ ◡2nd ∈ V |
46 | | snex 4112 |
. . . . . . . . 9
⊢ {◡r} ∈ V |
47 | 45, 46 | imaex 4748 |
. . . . . . . 8
⊢ (◡2nd “ {◡r})
∈ V |
48 | | vvex 4110 |
. . . . . . . 8
⊢ V ∈ V |
49 | 47, 48 | xpex 5116 |
. . . . . . 7
⊢ ((◡2nd “ {◡r})
× V) ∈ V |
50 | 43, 49 | inex 4106 |
. . . . . 6
⊢ (1st
∩ ((◡2nd “ {◡r})
× V)) ∈ V |
51 | 50, 43 | coex 4751 |
. . . . 5
⊢ ((1st
∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ∈ V |
52 | 51, 44 | txpex 5786 |
. . . 4
⊢ (((1st
∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) ∈ V |
53 | | composeex 5821 |
. . . 4
⊢ Compose ∈
V |
54 | 52, 53 | imaex 4748 |
. . 3
⊢ ((((1st
∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ∈ V |
55 | | ovex 5552 |
. . 3
⊢ (G ↑m A) ∈
V |
56 | 54, 55 | resex 5118 |
. 2
⊢ (((((1st
∩ ((◡2nd “ {◡r})
× V)) ∘ 1st ) ⊗
2nd ) “ Compose ) ↾ (G
↑m A)) ∈ V |
57 | 42, 56 | eqeltri 2423 |
1
⊢ W ∈
V |