New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > releqmpt | GIF version |
Description: Equality condition for a mapping. (Contributed by SF, 9-Mar-2015.) |
Ref | Expression |
---|---|
releqmpt.1 | ⊢ (〈{y}, x〉 ∈ R ↔ y ∈ V) |
Ref | Expression |
---|---|
releqmpt | ⊢ ((A × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) = (x ∈ A ↦ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . . . 4 ⊢ (〈x, z〉 ∈ ((A × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) ↔ (〈x, z〉 ∈ (A × V) ∧ 〈x, z〉 ∈ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c))) | |
2 | vex 2863 | . . . . . 6 ⊢ z ∈ V | |
3 | opelxp 4812 | . . . . . 6 ⊢ (〈x, z〉 ∈ (A × V) ↔ (x ∈ A ∧ z ∈ V)) | |
4 | 2, 3 | mpbiran2 885 | . . . . 5 ⊢ (〈x, z〉 ∈ (A × V) ↔ x ∈ A) |
5 | opelcnv 4894 | . . . . . 6 ⊢ (〈x, z〉 ∈ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ 〈z, x〉 ∈ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) | |
6 | vex 2863 | . . . . . . 7 ⊢ x ∈ V | |
7 | releqmpt.1 | . . . . . . 7 ⊢ (〈{y}, x〉 ∈ R ↔ y ∈ V) | |
8 | 6, 7 | releqel 5808 | . . . . . 6 ⊢ (〈z, x〉 ∈ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ z = V) |
9 | 5, 8 | bitri 240 | . . . . 5 ⊢ (〈x, z〉 ∈ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ z = V) |
10 | 4, 9 | anbi12i 678 | . . . 4 ⊢ ((〈x, z〉 ∈ (A × V) ∧ 〈x, z〉 ∈ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) ↔ (x ∈ A ∧ z = V)) |
11 | 1, 10 | bitri 240 | . . 3 ⊢ (〈x, z〉 ∈ ((A × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) ↔ (x ∈ A ∧ z = V)) |
12 | 11 | opabbi2i 4867 | . 2 ⊢ ((A × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) = {〈x, z〉 ∣ (x ∈ A ∧ z = V)} |
13 | df-mpt 5653 | . 2 ⊢ (x ∈ A ↦ V) = {〈x, z〉 ∣ (x ∈ A ∧ z = V)} | |
14 | 12, 13 | eqtr4i 2376 | 1 ⊢ ((A × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) = (x ∈ A ↦ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∼ ccompl 3206 ∩ cin 3209 ⊕ csymdif 3210 {csn 3738 1cc1c 4135 〈cop 4562 {copab 4623 S csset 4720 “ cima 4723 × cxp 4771 ◡ccnv 4772 ↦ cmpt 5652 Ins2 cins2 5750 Ins3 cins3 5752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-sset 4726 df-co 4727 df-ima 4728 df-xp 4785 df-cnv 4786 df-2nd 4798 df-mpt 5653 df-txp 5737 df-ins2 5751 df-ins3 5753 |
This theorem is referenced by: pw1fnex 5853 domfnex 5871 ranfnex 5872 enprmaplem1 6077 enprmaplem4 6080 tcfnex 6245 |
Copyright terms: Public domain | W3C validator |