NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  releqmpt GIF version

Theorem releqmpt 5809
Description: Equality condition for a mapping. (Contributed by SF, 9-Mar-2015.)
Hypothesis
Ref Expression
releqmpt.1 ({y}, x Ry V)
Assertion
Ref Expression
releqmpt ((A × V) ∩ ∼ (( Ins3 S Ins2 R) “ 1c)) = (x A V)
Distinct variable groups:   x,A   x,R,y   y,V   x,y
Allowed substitution hints:   A(y)   V(x)

Proof of Theorem releqmpt
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 elin 3220 . . . 4 (x, z ((A × V) ∩ ∼ (( Ins3 S Ins2 R) “ 1c)) ↔ (x, z (A × V) x, z ∼ (( Ins3 S Ins2 R) “ 1c)))
2 vex 2863 . . . . . 6 z V
3 opelxp 4812 . . . . . 6 (x, z (A × V) ↔ (x A z V))
42, 3mpbiran2 885 . . . . 5 (x, z (A × V) ↔ x A)
5 opelcnv 4894 . . . . . 6 (x, z ∼ (( Ins3 S Ins2 R) “ 1c) ↔ z, x ∼ (( Ins3 S Ins2 R) “ 1c))
6 vex 2863 . . . . . . 7 x V
7 releqmpt.1 . . . . . . 7 ({y}, x Ry V)
86, 7releqel 5808 . . . . . 6 (z, x ∼ (( Ins3 S Ins2 R) “ 1c) ↔ z = V)
95, 8bitri 240 . . . . 5 (x, z ∼ (( Ins3 S Ins2 R) “ 1c) ↔ z = V)
104, 9anbi12i 678 . . . 4 ((x, z (A × V) x, z ∼ (( Ins3 S Ins2 R) “ 1c)) ↔ (x A z = V))
111, 10bitri 240 . . 3 (x, z ((A × V) ∩ ∼ (( Ins3 S Ins2 R) “ 1c)) ↔ (x A z = V))
1211opabbi2i 4867 . 2 ((A × V) ∩ ∼ (( Ins3 S Ins2 R) “ 1c)) = {x, z (x A z = V)}
13 df-mpt 5653 . 2 (x A V) = {x, z (x A z = V)}
1412, 13eqtr4i 2376 1 ((A × V) ∩ ∼ (( Ins3 S Ins2 R) “ 1c)) = (x A V)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642   wcel 1710  Vcvv 2860  ccompl 3206  cin 3209  csymdif 3210  {csn 3738  1cc1c 4135  cop 4562  {copab 4623   S csset 4720  cima 4723   × cxp 4771  ccnv 4772   cmpt 5652   Ins2 cins2 5750   Ins3 cins3 5752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-sset 4726  df-co 4727  df-ima 4728  df-xp 4785  df-cnv 4786  df-2nd 4798  df-mpt 5653  df-txp 5737  df-ins2 5751  df-ins3 5753
This theorem is referenced by:  pw1fnex  5853  domfnex  5871  ranfnex  5872  enprmaplem1  6077  enprmaplem4  6080  tcfnex  6245
  Copyright terms: Public domain W3C validator