NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enmap1lem1 GIF version

Theorem enmap1lem1 6070
Description: Lemma for enmap1 6075. Set up stratification. (Contributed by SF, 3-Mar-2015.)
Hypothesis
Ref Expression
enmap1lem1.1 W = (s (Am G) (r s))
Assertion
Ref Expression
enmap1lem1 W V
Distinct variable groups:   A,r,s   G,s
Allowed substitution hints:   G(r)   W(s,r)

Proof of Theorem enmap1lem1
Dummy variables p x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 5653 . . 3 (s (Am G) (r s)) = {s, x (s (Am G) x = (r s))}
2 enmap1lem1.1 . . 3 W = (s (Am G) (r s))
3 opelres 4951 . . . . 5 (s, x (((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) (Am G)) ↔ (s, x ((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) s (Am G)))
4 elima 4755 . . . . . . . . 9 (s, x ((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) ↔ p Compose p(((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd )s, x)
5 trtxp 5782 . . . . . . . . . . . 12 (p(((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd )s, x ↔ (p((((1st “ {r}) × V) ∩ 2nd ) 1st )s p2nd x))
6 brco 4884 . . . . . . . . . . . . . 14 (p((((1st “ {r}) × V) ∩ 2nd ) 1st )sx(p1st x x(((1st “ {r}) × V) ∩ 2nd )s))
7 ancom 437 . . . . . . . . . . . . . . . 16 ((p1st x x(((1st “ {r}) × V) ∩ 2nd )s) ↔ (x(((1st “ {r}) × V) ∩ 2nd )s p1st x))
8 brin 4694 . . . . . . . . . . . . . . . . . 18 (x(((1st “ {r}) × V) ∩ 2nd )s ↔ (x((1st “ {r}) × V)s x2nd s))
9 vex 2863 . . . . . . . . . . . . . . . . . . . . 21 s V
10 brxp 4813 . . . . . . . . . . . . . . . . . . . . 21 (x((1st “ {r}) × V)s ↔ (x (1st “ {r}) s V))
119, 10mpbiran2 885 . . . . . . . . . . . . . . . . . . . 20 (x((1st “ {r}) × V)sx (1st “ {r}))
12 eliniseg 5021 . . . . . . . . . . . . . . . . . . . 20 (x (1st “ {r}) ↔ x1st r)
1311, 12bitri 240 . . . . . . . . . . . . . . . . . . 19 (x((1st “ {r}) × V)sx1st r)
1413anbi1i 676 . . . . . . . . . . . . . . . . . 18 ((x((1st “ {r}) × V)s x2nd s) ↔ (x1st r x2nd s))
15 vex 2863 . . . . . . . . . . . . . . . . . . 19 r V
1615, 9op1st2nd 5791 . . . . . . . . . . . . . . . . . 18 ((x1st r x2nd s) ↔ x = r, s)
178, 14, 163bitri 262 . . . . . . . . . . . . . . . . 17 (x(((1st “ {r}) × V) ∩ 2nd )sx = r, s)
1817anbi1i 676 . . . . . . . . . . . . . . . 16 ((x(((1st “ {r}) × V) ∩ 2nd )s p1st x) ↔ (x = r, s p1st x))
197, 18bitri 240 . . . . . . . . . . . . . . 15 ((p1st x x(((1st “ {r}) × V) ∩ 2nd )s) ↔ (x = r, s p1st x))
2019exbii 1582 . . . . . . . . . . . . . 14 (x(p1st x x(((1st “ {r}) × V) ∩ 2nd )s) ↔ x(x = r, s p1st x))
2115, 9opex 4589 . . . . . . . . . . . . . . 15 r, s V
22 breq2 4644 . . . . . . . . . . . . . . 15 (x = r, s → (p1st xp1st r, s))
2321, 22ceqsexv 2895 . . . . . . . . . . . . . 14 (x(x = r, s p1st x) ↔ p1st r, s)
246, 20, 233bitri 262 . . . . . . . . . . . . 13 (p((((1st “ {r}) × V) ∩ 2nd ) 1st )sp1st r, s)
2524anbi1i 676 . . . . . . . . . . . 12 ((p((((1st “ {r}) × V) ∩ 2nd ) 1st )s p2nd x) ↔ (p1st r, s p2nd x))
26 vex 2863 . . . . . . . . . . . . 13 x V
2721, 26op1st2nd 5791 . . . . . . . . . . . 12 ((p1st r, s p2nd x) ↔ p = r, s, x)
285, 25, 273bitri 262 . . . . . . . . . . 11 (p(((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd )s, xp = r, s, x)
2928rexbii 2640 . . . . . . . . . 10 (p Compose p(((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd )s, xp Compose p = r, s, x)
30 risset 2662 . . . . . . . . . 10 (r, s, x Composep Compose p = r, s, x)
3129, 30bitr4i 243 . . . . . . . . 9 (p Compose p(((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd )s, xr, s, x Compose )
324, 31bitri 240 . . . . . . . 8 (s, x ((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) ↔ r, s, x Compose )
33 df-br 4641 . . . . . . . 8 (r, s Compose xr, s, x Compose )
3432, 33bitr4i 243 . . . . . . 7 (s, x ((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) ↔ r, s Compose x)
35 brcomposeg 5820 . . . . . . . 8 ((r V s V) → (r, s Compose x ↔ (r s) = x))
3615, 9, 35mp2an 653 . . . . . . 7 (r, s Compose x ↔ (r s) = x)
37 eqcom 2355 . . . . . . 7 ((r s) = xx = (r s))
3834, 36, 373bitri 262 . . . . . 6 (s, x ((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) ↔ x = (r s))
3938anbi2ci 677 . . . . 5 ((s, x ((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) s (Am G)) ↔ (s (Am G) x = (r s)))
403, 39bitri 240 . . . 4 (s, x (((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) (Am G)) ↔ (s (Am G) x = (r s)))
4140opabbi2i 4867 . . 3 (((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) (Am G)) = {s, x (s (Am G) x = (r s))}
421, 2, 413eqtr4i 2383 . 2 W = (((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) (Am G))
43 1stex 4740 . . . . . . . . . 10 1st V
4443cnvex 5103 . . . . . . . . 9 1st V
45 snex 4112 . . . . . . . . 9 {r} V
4644, 45imaex 4748 . . . . . . . 8 (1st “ {r}) V
47 vvex 4110 . . . . . . . 8 V V
4846, 47xpex 5116 . . . . . . 7 ((1st “ {r}) × V) V
49 2ndex 5113 . . . . . . 7 2nd V
5048, 49inex 4106 . . . . . 6 (((1st “ {r}) × V) ∩ 2nd ) V
5150, 43coex 4751 . . . . 5 ((((1st “ {r}) × V) ∩ 2nd ) 1st ) V
5251, 49txpex 5786 . . . 4 (((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) V
53 composeex 5821 . . . 4 Compose V
5452, 53imaex 4748 . . 3 ((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) V
55 ovex 5552 . . 3 (Am G) V
5654, 55resex 5118 . 2 (((((((1st “ {r}) × V) ∩ 2nd ) 1st ) ⊗ 2nd ) “ Compose ) (Am G)) V
5742, 56eqeltri 2423 1 W V
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  cin 3209  {csn 3738  cop 4562  {copab 4623   class class class wbr 4640  1st c1st 4718   ccom 4722  cima 4723   × cxp 4771  ccnv 4772   cres 4775  2nd c2nd 4784  (class class class)co 5526   cmpt 5652  ctxp 5736   Compose ccompose 5748  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-compose 5749  df-ins2 5751  df-ins3 5753  df-ins4 5757  df-si3 5759
This theorem is referenced by:  enmap1  6075
  Copyright terms: Public domain W3C validator