| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-mpt 5653 | 
. . 3
⊢ (s ∈ (A ↑m G) ↦ (r ∘ s)) = {〈s, x〉 ∣ (s ∈ (A ↑m G) ∧ x = (r ∘ s))} | 
| 2 |   | enmap1lem1.1 | 
. . 3
⊢ W = (s ∈ (A
↑m G) ↦ (r ∘ s)) | 
| 3 |   | opelres 4951 | 
. . . . 5
⊢ (〈s, x〉 ∈ (((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↾ (A
↑m G)) ↔ (〈s, x〉 ∈ ((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ∧ s ∈ (A
↑m G))) | 
| 4 |   | elima 4755 | 
. . . . . . . . 9
⊢ (〈s, x〉 ∈ ((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↔ ∃p ∈ Compose p(((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )〈s, x〉) | 
| 5 |   | trtxp 5782 | 
. . . . . . . . . . . 12
⊢ (p(((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )〈s, x〉 ↔
(p((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st )s ∧ p2nd x)) | 
| 6 |   | brco 4884 | 
. . . . . . . . . . . . . 14
⊢ (p((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st )s ↔ ∃x(p1st x ∧ x(((◡1st “ {r}) × V) ∩ 2nd )s)) | 
| 7 |   | ancom 437 | 
. . . . . . . . . . . . . . . 16
⊢ ((p1st x ∧ x(((◡1st “ {r}) × V) ∩ 2nd )s) ↔ (x(((◡1st “ {r}) × V) ∩ 2nd )s ∧ p1st x)) | 
| 8 |   | brin 4694 | 
. . . . . . . . . . . . . . . . . 18
⊢ (x(((◡1st “ {r}) × V) ∩ 2nd )s ↔ (x((◡1st “ {r}) × V)s
∧ x2nd s)) | 
| 9 |   | vex 2863 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ s ∈
V | 
| 10 |   | brxp 4813 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (x((◡1st “ {r}) × V)s
↔ (x ∈ (◡1st “ {r}) ∧ s ∈
V)) | 
| 11 | 9, 10 | mpbiran2 885 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (x((◡1st “ {r}) × V)s
↔ x ∈ (◡1st “ {r})) | 
| 12 |   | eliniseg 5021 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (x ∈ (◡1st “ {r}) ↔ x1st r) | 
| 13 | 11, 12 | bitri 240 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (x((◡1st “ {r}) × V)s
↔ x1st r) | 
| 14 | 13 | anbi1i 676 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((x((◡1st “ {r}) × V)s
∧ x2nd s) ↔ (x1st r ∧ x2nd s)) | 
| 15 |   | vex 2863 | 
. . . . . . . . . . . . . . . . . . 19
⊢ r ∈
V | 
| 16 | 15, 9 | op1st2nd 5791 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((x1st r ∧ x2nd s) ↔ x =
〈r,
s〉) | 
| 17 | 8, 14, 16 | 3bitri 262 | 
. . . . . . . . . . . . . . . . 17
⊢ (x(((◡1st “ {r}) × V) ∩ 2nd )s ↔ x =
〈r,
s〉) | 
| 18 | 17 | anbi1i 676 | 
. . . . . . . . . . . . . . . 16
⊢ ((x(((◡1st “ {r}) × V) ∩ 2nd )s ∧ p1st x) ↔ (x =
〈r,
s〉 ∧ p1st x)) | 
| 19 | 7, 18 | bitri 240 | 
. . . . . . . . . . . . . . 15
⊢ ((p1st x ∧ x(((◡1st “ {r}) × V) ∩ 2nd )s) ↔ (x =
〈r,
s〉 ∧ p1st x)) | 
| 20 | 19 | exbii 1582 | 
. . . . . . . . . . . . . 14
⊢ (∃x(p1st x ∧ x(((◡1st “ {r}) × V) ∩ 2nd )s) ↔ ∃x(x = 〈r, s〉 ∧ p1st x)) | 
| 21 | 15, 9 | opex 4589 | 
. . . . . . . . . . . . . . 15
⊢ 〈r, s〉 ∈ V | 
| 22 |   | breq2 4644 | 
. . . . . . . . . . . . . . 15
⊢ (x = 〈r, s〉 → (p1st x ↔ p1st 〈r, s〉)) | 
| 23 | 21, 22 | ceqsexv 2895 | 
. . . . . . . . . . . . . 14
⊢ (∃x(x = 〈r, s〉 ∧ p1st x) ↔ p1st 〈r, s〉) | 
| 24 | 6, 20, 23 | 3bitri 262 | 
. . . . . . . . . . . . 13
⊢ (p((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st )s ↔ p1st 〈r, s〉) | 
| 25 | 24 | anbi1i 676 | 
. . . . . . . . . . . 12
⊢ ((p((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st )s ∧ p2nd x) ↔ (p1st 〈r, s〉 ∧ p2nd x)) | 
| 26 |   | vex 2863 | 
. . . . . . . . . . . . 13
⊢ x ∈
V | 
| 27 | 21, 26 | op1st2nd 5791 | 
. . . . . . . . . . . 12
⊢ ((p1st 〈r, s〉 ∧ p2nd x) ↔ p =
〈〈r, s〉, x〉) | 
| 28 | 5, 25, 27 | 3bitri 262 | 
. . . . . . . . . . 11
⊢ (p(((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )〈s, x〉 ↔ p = 〈〈r, s〉, x〉) | 
| 29 | 28 | rexbii 2640 | 
. . . . . . . . . 10
⊢ (∃p ∈ Compose p(((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )〈s, x〉 ↔ ∃p ∈ Compose p = 〈〈r, s〉, x〉) | 
| 30 |   | risset 2662 | 
. . . . . . . . . 10
⊢ (〈〈r, s〉, x〉 ∈ Compose ↔ ∃p ∈ Compose p = 〈〈r, s〉, x〉) | 
| 31 | 29, 30 | bitr4i 243 | 
. . . . . . . . 9
⊢ (∃p ∈ Compose p(((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )〈s, x〉 ↔ 〈〈r, s〉, x〉 ∈ Compose ) | 
| 32 | 4, 31 | bitri 240 | 
. . . . . . . 8
⊢ (〈s, x〉 ∈ ((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↔ 〈〈r, s〉, x〉 ∈ Compose ) | 
| 33 |   | df-br 4641 | 
. . . . . . . 8
⊢ (〈r, s〉 Compose x ↔
〈〈r, s〉, x〉 ∈ Compose ) | 
| 34 | 32, 33 | bitr4i 243 | 
. . . . . . 7
⊢ (〈s, x〉 ∈ ((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↔ 〈r, s〉 Compose x) | 
| 35 |   | brcomposeg 5820 | 
. . . . . . . 8
⊢ ((r ∈ V ∧ s ∈ V) → (〈r, s〉 Compose x ↔
(r ∘
s) = x)) | 
| 36 | 15, 9, 35 | mp2an 653 | 
. . . . . . 7
⊢ (〈r, s〉 Compose x ↔
(r ∘
s) = x) | 
| 37 |   | eqcom 2355 | 
. . . . . . 7
⊢ ((r ∘ s) = x ↔
x = (r
∘ s)) | 
| 38 | 34, 36, 37 | 3bitri 262 | 
. . . . . 6
⊢ (〈s, x〉 ∈ ((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↔ x = (r ∘ s)) | 
| 39 | 38 | anbi2ci 677 | 
. . . . 5
⊢ ((〈s, x〉 ∈ ((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ∧ s ∈ (A
↑m G)) ↔
(s ∈
(A ↑m G) ∧ x = (r ∘ s))) | 
| 40 | 3, 39 | bitri 240 | 
. . . 4
⊢ (〈s, x〉 ∈ (((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↾ (A
↑m G)) ↔
(s ∈
(A ↑m G) ∧ x = (r ∘ s))) | 
| 41 | 40 | opabbi2i 4867 | 
. . 3
⊢ (((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↾ (A
↑m G)) = {〈s, x〉 ∣ (s ∈ (A
↑m G) ∧ x = (r ∘ s))} | 
| 42 | 1, 2, 41 | 3eqtr4i 2383 | 
. 2
⊢ W = (((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↾ (A
↑m G)) | 
| 43 |   | 1stex 4740 | 
. . . . . . . . . 10
⊢ 1st
∈ V | 
| 44 | 43 | cnvex 5103 | 
. . . . . . . . 9
⊢ ◡1st ∈ V | 
| 45 |   | snex 4112 | 
. . . . . . . . 9
⊢ {r} ∈
V | 
| 46 | 44, 45 | imaex 4748 | 
. . . . . . . 8
⊢ (◡1st “ {r}) ∈
V | 
| 47 |   | vvex 4110 | 
. . . . . . . 8
⊢ V ∈ V | 
| 48 | 46, 47 | xpex 5116 | 
. . . . . . 7
⊢ ((◡1st “ {r}) × V) ∈
V | 
| 49 |   | 2ndex 5113 | 
. . . . . . 7
⊢ 2nd
∈ V | 
| 50 | 48, 49 | inex 4106 | 
. . . . . 6
⊢ (((◡1st “ {r}) × V) ∩ 2nd ) ∈ V | 
| 51 | 50, 43 | coex 4751 | 
. . . . 5
⊢ ((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ∈ V | 
| 52 | 51, 49 | txpex 5786 | 
. . . 4
⊢ (((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd ) ∈ V | 
| 53 |   | composeex 5821 | 
. . . 4
⊢  Compose ∈
V | 
| 54 | 52, 53 | imaex 4748 | 
. . 3
⊢ ((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ∈ V | 
| 55 |   | ovex 5552 | 
. . 3
⊢ (A ↑m G) ∈
V | 
| 56 | 54, 55 | resex 5118 | 
. 2
⊢ (((((((◡1st “ {r}) × V) ∩ 2nd ) ∘ 1st ) ⊗ 2nd )
“ Compose ) ↾ (A
↑m G)) ∈ V | 
| 57 | 42, 56 | eqeltri 2423 | 
1
⊢ W ∈
V |