New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpt2mptx | GIF version |
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version B(x) is not assumed to be constant w.r.t x. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpt2mpt.1 | ⊢ (z = 〈x, y〉 → C = D) |
Ref | Expression |
---|---|
mpt2mptx | ⊢ (z ∈ ∪x ∈ A ({x} × B) ↦ C) = (x ∈ A, y ∈ B ↦ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5653 | . 2 ⊢ (z ∈ ∪x ∈ A ({x} × B) ↦ C) = {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} | |
2 | df-mpt2 5655 | . . 3 ⊢ (x ∈ A, y ∈ B ↦ D) = {〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = D)} | |
3 | eliunxp 4822 | . . . . . . 7 ⊢ (z ∈ ∪x ∈ A ({x} × B) ↔ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) | |
4 | 3 | anbi1i 676 | . . . . . 6 ⊢ ((z ∈ ∪x ∈ A ({x} × B) ∧ w = C) ↔ (∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C)) |
5 | 19.41vv 1902 | . . . . . 6 ⊢ (∃x∃y((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ (∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C)) | |
6 | anass 630 | . . . . . . . 8 ⊢ (((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ (z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = C))) | |
7 | mpt2mpt.1 | . . . . . . . . . . 11 ⊢ (z = 〈x, y〉 → C = D) | |
8 | 7 | eqeq2d 2364 | . . . . . . . . . 10 ⊢ (z = 〈x, y〉 → (w = C ↔ w = D)) |
9 | 8 | anbi2d 684 | . . . . . . . . 9 ⊢ (z = 〈x, y〉 → (((x ∈ A ∧ y ∈ B) ∧ w = C) ↔ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
10 | 9 | pm5.32i 618 | . . . . . . . 8 ⊢ ((z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = C)) ↔ (z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
11 | 6, 10 | bitri 240 | . . . . . . 7 ⊢ (((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ (z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
12 | 11 | 2exbii 1583 | . . . . . 6 ⊢ (∃x∃y((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
13 | 4, 5, 12 | 3bitr2i 264 | . . . . 5 ⊢ ((z ∈ ∪x ∈ A ({x} × B) ∧ w = C) ↔ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
14 | 13 | opabbii 4627 | . . . 4 ⊢ {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} = {〈z, w〉 ∣ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))} |
15 | dfoprab2 5559 | . . . 4 ⊢ {〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = D)} = {〈z, w〉 ∣ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))} | |
16 | 14, 15 | eqtr4i 2376 | . . 3 ⊢ {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} = {〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = D)} |
17 | 2, 16 | eqtr4i 2376 | . 2 ⊢ (x ∈ A, y ∈ B ↦ D) = {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} |
18 | 1, 17 | eqtr4i 2376 | 1 ⊢ (z ∈ ∪x ∈ A ({x} × B) ↦ C) = (x ∈ A, y ∈ B ↦ D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {csn 3738 ∪ciun 3970 〈cop 4562 {copab 4623 × cxp 4771 {coprab 5528 ↦ cmpt 5652 ↦ cmpt2 5654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-xp 4785 df-oprab 5529 df-mpt 5653 df-mpt2 5655 |
This theorem is referenced by: mpt2mpt 5710 fmpt2x 5731 |
Copyright terms: Public domain | W3C validator |