New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpt2mptx | GIF version |
Description: Express a two-argument function as a one-argument function, or vice-versa. In this version B(x) is not assumed to be constant w.r.t x. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
mpt2mpt.1 | ⊢ (z = 〈x, y〉 → C = D) |
Ref | Expression |
---|---|
mpt2mptx | ⊢ (z ∈ ∪x ∈ A ({x} × B) ↦ C) = (x ∈ A, y ∈ B ↦ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5652 | . 2 ⊢ (z ∈ ∪x ∈ A ({x} × B) ↦ C) = {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} | |
2 | df-mpt2 5654 | . . 3 ⊢ (x ∈ A, y ∈ B ↦ D) = {〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = D)} | |
3 | eliunxp 4821 | . . . . . . 7 ⊢ (z ∈ ∪x ∈ A ({x} × B) ↔ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) | |
4 | 3 | anbi1i 676 | . . . . . 6 ⊢ ((z ∈ ∪x ∈ A ({x} × B) ∧ w = C) ↔ (∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C)) |
5 | 19.41vv 1902 | . . . . . 6 ⊢ (∃x∃y((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ (∃x∃y(z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C)) | |
6 | anass 630 | . . . . . . . 8 ⊢ (((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ (z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = C))) | |
7 | mpt2mpt.1 | . . . . . . . . . . 11 ⊢ (z = 〈x, y〉 → C = D) | |
8 | 7 | eqeq2d 2364 | . . . . . . . . . 10 ⊢ (z = 〈x, y〉 → (w = C ↔ w = D)) |
9 | 8 | anbi2d 684 | . . . . . . . . 9 ⊢ (z = 〈x, y〉 → (((x ∈ A ∧ y ∈ B) ∧ w = C) ↔ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
10 | 9 | pm5.32i 618 | . . . . . . . 8 ⊢ ((z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = C)) ↔ (z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
11 | 6, 10 | bitri 240 | . . . . . . 7 ⊢ (((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ (z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
12 | 11 | 2exbii 1583 | . . . . . 6 ⊢ (∃x∃y((z = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ w = C) ↔ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
13 | 4, 5, 12 | 3bitr2i 264 | . . . . 5 ⊢ ((z ∈ ∪x ∈ A ({x} × B) ∧ w = C) ↔ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))) |
14 | 13 | opabbii 4626 | . . . 4 ⊢ {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} = {〈z, w〉 ∣ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))} |
15 | dfoprab2 5558 | . . . 4 ⊢ {〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = D)} = {〈z, w〉 ∣ ∃x∃y(z = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ w = D))} | |
16 | 14, 15 | eqtr4i 2376 | . . 3 ⊢ {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} = {〈〈x, y〉, w〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ w = D)} |
17 | 2, 16 | eqtr4i 2376 | . 2 ⊢ (x ∈ A, y ∈ B ↦ D) = {〈z, w〉 ∣ (z ∈ ∪x ∈ A ({x} × B) ∧ w = C)} |
18 | 1, 17 | eqtr4i 2376 | 1 ⊢ (z ∈ ∪x ∈ A ({x} × B) ↦ C) = (x ∈ A, y ∈ B ↦ D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {csn 3737 ∪ciun 3969 〈cop 4561 {copab 4622 × cxp 4770 {coprab 5527 ↦ cmpt 5651 ↦ cmpt2 5653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-xp 4784 df-oprab 5528 df-mpt 5652 df-mpt2 5654 |
This theorem is referenced by: mpt2mpt 5709 fmpt2x 5730 |
Copyright terms: Public domain | W3C validator |