Step | Hyp | Ref
| Expression |
1 | | snex 4112 |
. . . . . 6
⊢ {x} ∈
V |
2 | | eqid 2353 |
. . . . . 6
⊢ (x ∈ A ↦ {x}) = (x ∈ A ↦ {x}) |
3 | 1, 2 | fnmpti 5691 |
. . . . 5
⊢ (x ∈ A ↦ {x}) Fn A |
4 | | elpw1 4145 |
. . . . . . 7
⊢ (y ∈ ℘1A ↔ ∃z ∈ A y = {z}) |
5 | | euequ1 2292 |
. . . . . . . . 9
⊢ ∃!x x = z |
6 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (y = {z} →
(y = {x} ↔ {z} =
{x})) |
7 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ z ∈
V |
8 | 7 | sneqb 3877 |
. . . . . . . . . . . 12
⊢ ({z} = {x} ↔
z = x) |
9 | | equcom 1680 |
. . . . . . . . . . . 12
⊢ (z = x ↔
x = z) |
10 | 8, 9 | bitri 240 |
. . . . . . . . . . 11
⊢ ({z} = {x} ↔
x = z) |
11 | 6, 10 | syl6bb 252 |
. . . . . . . . . 10
⊢ (y = {z} →
(y = {x} ↔ x =
z)) |
12 | 11 | eubidv 2212 |
. . . . . . . . 9
⊢ (y = {z} →
(∃!x
y = {x}
↔ ∃!x x = z)) |
13 | 5, 12 | mpbiri 224 |
. . . . . . . 8
⊢ (y = {z} →
∃!x
y = {x}) |
14 | 13 | rexlimivw 2735 |
. . . . . . 7
⊢ (∃z ∈ A y = {z} →
∃!x
y = {x}) |
15 | 4, 14 | sylbi 187 |
. . . . . 6
⊢ (y ∈ ℘1A → ∃!x y = {x}) |
16 | | df-mpt 5653 |
. . . . . . . 8
⊢ (x ∈ A ↦ {x}) = {〈x, y〉 ∣ (x ∈ A ∧ y = {x})} |
17 | 16 | cnveqi 4888 |
. . . . . . 7
⊢ ◡(x ∈ A ↦ {x}) = ◡{〈x, y〉 ∣ (x ∈ A ∧ y = {x})} |
18 | | cnvopab 5031 |
. . . . . . 7
⊢ ◡{〈x, y〉 ∣ (x ∈ A ∧ y = {x})} =
{〈y,
x〉 ∣ (x ∈ A ∧ y = {x})} |
19 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (y = {x} →
(y ∈
℘1A ↔ {x}
∈ ℘1A)) |
20 | | snelpw1 4147 |
. . . . . . . . . 10
⊢ ({x} ∈ ℘1A ↔ x ∈ A) |
21 | 19, 20 | syl6rbb 253 |
. . . . . . . . 9
⊢ (y = {x} →
(x ∈
A ↔ y ∈ ℘1A)) |
22 | 21 | pm5.32ri 619 |
. . . . . . . 8
⊢ ((x ∈ A ∧ y = {x}) ↔
(y ∈
℘1A ∧ y = {x})) |
23 | 22 | opabbii 4627 |
. . . . . . 7
⊢ {〈y, x〉 ∣ (x ∈ A ∧ y = {x})} = {〈y, x〉 ∣ (y ∈ ℘1A ∧ y = {x})} |
24 | 17, 18, 23 | 3eqtri 2377 |
. . . . . 6
⊢ ◡(x ∈ A ↦ {x}) =
{〈y,
x〉 ∣ (y ∈ ℘1A ∧ y = {x})} |
25 | 15, 24 | fnopab 5208 |
. . . . 5
⊢ ◡(x ∈ A ↦ {x}) Fn
℘1A |
26 | | dff1o4 5295 |
. . . . 5
⊢ ((x ∈ A ↦ {x}):A–1-1-onto→℘1A ↔ ((x
∈ A ↦ {x}) Fn
A ∧ ◡(x ∈ A ↦ {x}) Fn
℘1A)) |
27 | 3, 25, 26 | mpbir2an 886 |
. . . 4
⊢ (x ∈ A ↦ {x}):A–1-1-onto→℘1A |
28 | | f1oeng 6033 |
. . . 4
⊢ (((x ∈ A ↦ {x}) ∈ V ∧ (x ∈ A ↦ {x}):A–1-1-onto→℘1A) → A
≈ ℘1A) |
29 | 27, 28 | mpan2 652 |
. . 3
⊢ ((x ∈ A ↦ {x}) ∈ V →
A ≈ ℘1A) |
30 | | ensymi 6037 |
. . 3
⊢ (A ≈ ℘1A → ℘1A ≈ A) |
31 | 29, 30 | syl 15 |
. 2
⊢ ((x ∈ A ↦ {x}) ∈ V →
℘1A ≈ A) |
32 | | elscan 6331 |
. 2
⊢ (A ∈ SCan ↔ (x ∈ A ↦ {x}) ∈ V) |
33 | | elcan 6330 |
. 2
⊢ (A ∈ Can ↔ ℘1A ≈ A) |
34 | 31, 32, 33 | 3imtr4i 257 |
1
⊢ (A ∈ SCan → A ∈ Can
) |