NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  scancan GIF version

Theorem scancan 6332
Description: Strongly Cantorian implies Cantorian. Observation from [Holmes], p. 134. (Contributed by Scott Fenton, 19-Apr-2021.)
Assertion
Ref Expression
scancan (A SCanA Can )

Proof of Theorem scancan
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4112 . . . . . 6 {x} V
2 eqid 2353 . . . . . 6 (x A {x}) = (x A {x})
31, 2fnmpti 5691 . . . . 5 (x A {x}) Fn A
4 elpw1 4145 . . . . . . 7 (y 1Az A y = {z})
5 euequ1 2292 . . . . . . . . 9 ∃!x x = z
6 eqeq1 2359 . . . . . . . . . . 11 (y = {z} → (y = {x} ↔ {z} = {x}))
7 vex 2863 . . . . . . . . . . . . 13 z V
87sneqb 3877 . . . . . . . . . . . 12 ({z} = {x} ↔ z = x)
9 equcom 1680 . . . . . . . . . . . 12 (z = xx = z)
108, 9bitri 240 . . . . . . . . . . 11 ({z} = {x} ↔ x = z)
116, 10syl6bb 252 . . . . . . . . . 10 (y = {z} → (y = {x} ↔ x = z))
1211eubidv 2212 . . . . . . . . 9 (y = {z} → (∃!x y = {x} ↔ ∃!x x = z))
135, 12mpbiri 224 . . . . . . . 8 (y = {z} → ∃!x y = {x})
1413rexlimivw 2735 . . . . . . 7 (z A y = {z} → ∃!x y = {x})
154, 14sylbi 187 . . . . . 6 (y 1A∃!x y = {x})
16 df-mpt 5653 . . . . . . . 8 (x A {x}) = {x, y (x A y = {x})}
1716cnveqi 4888 . . . . . . 7 (x A {x}) = {x, y (x A y = {x})}
18 cnvopab 5031 . . . . . . 7 {x, y (x A y = {x})} = {y, x (x A y = {x})}
19 eleq1 2413 . . . . . . . . . 10 (y = {x} → (y 1A ↔ {x} 1A))
20 snelpw1 4147 . . . . . . . . . 10 ({x} 1Ax A)
2119, 20syl6rbb 253 . . . . . . . . 9 (y = {x} → (x Ay 1A))
2221pm5.32ri 619 . . . . . . . 8 ((x A y = {x}) ↔ (y 1A y = {x}))
2322opabbii 4627 . . . . . . 7 {y, x (x A y = {x})} = {y, x (y 1A y = {x})}
2417, 18, 233eqtri 2377 . . . . . 6 (x A {x}) = {y, x (y 1A y = {x})}
2515, 24fnopab 5208 . . . . 5 (x A {x}) Fn 1A
26 dff1o4 5295 . . . . 5 ((x A {x}):A1-1-onto1A ↔ ((x A {x}) Fn A (x A {x}) Fn 1A))
273, 25, 26mpbir2an 886 . . . 4 (x A {x}):A1-1-onto1A
28 f1oeng 6033 . . . 4 (((x A {x}) V (x A {x}):A1-1-onto1A) → A1A)
2927, 28mpan2 652 . . 3 ((x A {x}) V → A1A)
30 ensymi 6037 . . 3 (A1A1AA)
3129, 30syl 15 . 2 ((x A {x}) V → 1AA)
32 elscan 6331 . 2 (A SCan ↔ (x A {x}) V)
33 elcan 6330 . 2 (A Can1AA)
3431, 32, 333imtr4i 257 1 (A SCanA Can )
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  ∃!weu 2204  wrex 2616  Vcvv 2860  {csn 3738  1cpw1 4136  {copab 4623   class class class wbr 4640  ccnv 4772   Fn wfn 4777  1-1-ontowf1o 4781   cmpt 5652  cen 6029   Can ccan 6324   SCan cscan 6326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-swap 4725  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-mpt 5653  df-en 6030  df-can 6325  df-scan 6327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator