| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-op 4567 | 
. . . . 5
⊢ 〈A, B〉 = ({x ∣ ∃y ∈ A x =  Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) | 
| 2 | 1 | eleq2i 2417 | 
. . . 4
⊢ ( Phi z ∈ 〈A, B〉 ↔  Phi z ∈ ({x ∣ ∃y ∈ A x =  Phi y} ∪ {x
∣ ∃y ∈ B x = ( Phi y ∪ {0c})})) | 
| 3 |   | elun 3221 | 
. . . 4
⊢ ( Phi z ∈ ({x ∣ ∃y ∈ A x =  Phi y} ∪
{x ∣
∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ ( Phi z ∈ {x ∣ ∃y ∈ A x =  Phi y}  ∨  Phi z ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})})) | 
| 4 |   | vex 2863 | 
. . . . . . 7
⊢ z ∈
V | 
| 5 | 4 | phiex 4573 | 
. . . . . 6
⊢  Phi z ∈ V | 
| 6 |   | eqeq1 2359 | 
. . . . . . . . 9
⊢ (x =  Phi z → (x =
 Phi y ↔
 Phi z =  Phi y)) | 
| 7 |   | phi11 4597 | 
. . . . . . . . . 10
⊢ (z = y ↔
 Phi z =  Phi y) | 
| 8 |   | equcom 1680 | 
. . . . . . . . . 10
⊢ (z = y ↔
y = z) | 
| 9 | 7, 8 | bitr3i 242 | 
. . . . . . . . 9
⊢ ( Phi z =  Phi y ↔
y = z) | 
| 10 | 6, 9 | syl6bb 252 | 
. . . . . . . 8
⊢ (x =  Phi z → (x =
 Phi y ↔
y = z)) | 
| 11 | 10 | rexbidv 2636 | 
. . . . . . 7
⊢ (x =  Phi z → (∃y ∈ A x =  Phi y ↔ ∃y ∈ A y = z)) | 
| 12 |   | risset 2662 | 
. . . . . . 7
⊢ (z ∈ A ↔ ∃y ∈ A y = z) | 
| 13 | 11, 12 | syl6bbr 254 | 
. . . . . 6
⊢ (x =  Phi z → (∃y ∈ A x =  Phi y ↔ z ∈ A)) | 
| 14 | 5, 13 | elab 2986 | 
. . . . 5
⊢ ( Phi z ∈ {x ∣ ∃y ∈ A x =  Phi y} ↔
z ∈
A) | 
| 15 |   | eqeq1 2359 | 
. . . . . . 7
⊢ (x =  Phi z → (x =
( Phi y ∪
{0c}) ↔  Phi z = ( Phi y ∪ {0c}))) | 
| 16 | 15 | rexbidv 2636 | 
. . . . . 6
⊢ (x =  Phi z → (∃y ∈ B x = ( Phi y ∪ {0c}) ↔ ∃y ∈ B  Phi z = ( Phi y ∪
{0c}))) | 
| 17 | 5, 16 | elab 2986 | 
. . . . 5
⊢ ( Phi z ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪
{0c})} ↔ ∃y ∈ B  Phi z = ( Phi y ∪ {0c})) | 
| 18 | 14, 17 | orbi12i 507 | 
. . . 4
⊢ (( Phi z ∈ {x ∣ ∃y ∈ A x =  Phi y}  ∨  Phi z ∈ {x ∣ ∃y ∈ B x = ( Phi y ∪ {0c})}) ↔ (z ∈ A  ∨ ∃y ∈ B  Phi z = ( Phi y ∪
{0c}))) | 
| 19 | 2, 3, 18 | 3bitri 262 | 
. . 3
⊢ ( Phi z ∈ 〈A, B〉 ↔ (z
∈ A  ∨ ∃y ∈ B  Phi z = ( Phi y ∪ {0c}))) | 
| 20 |   | phieq 4571 | 
. . . . 5
⊢ (x = z →
 Phi x =  Phi z) | 
| 21 | 20 | eleq1d 2419 | 
. . . 4
⊢ (x = z →
( Phi x ∈ 〈A, B〉 ↔  Phi z ∈ 〈A, B〉)) | 
| 22 |   | df-proj1 4568 | 
. . . 4
⊢  Proj1 〈A, B〉 = {x ∣  Phi x ∈ 〈A, B〉} | 
| 23 | 4, 21, 22 | elab2 2989 | 
. . 3
⊢ (z ∈  Proj1 〈A, B〉 ↔  Phi z ∈ 〈A, B〉) | 
| 24 |   | 0cnelphi 4598 | 
. . . . . . 7
⊢  ¬
0c ∈ 
Phi z | 
| 25 |   | ssun2 3428 | 
. . . . . . . . 9
⊢
{0c} ⊆ ( Phi y ∪
{0c}) | 
| 26 |   | 0cex 4393 | 
. . . . . . . . . 10
⊢
0c ∈
V | 
| 27 | 26 | snid 3761 | 
. . . . . . . . 9
⊢
0c ∈
{0c} | 
| 28 | 25, 27 | sselii 3271 | 
. . . . . . . 8
⊢
0c ∈ ( Phi y ∪
{0c}) | 
| 29 |   | eleq2 2414 | 
. . . . . . . 8
⊢ ( Phi z = ( Phi y ∪
{0c}) → (0c ∈  Phi z ↔ 0c ∈ ( Phi y ∪ {0c}))) | 
| 30 | 28, 29 | mpbiri 224 | 
. . . . . . 7
⊢ ( Phi z = ( Phi y ∪
{0c}) → 0c ∈  Phi z) | 
| 31 | 24, 30 | mto 167 | 
. . . . . 6
⊢  ¬  Phi z = ( Phi y ∪
{0c}) | 
| 32 | 31 | a1i 10 | 
. . . . 5
⊢ (y ∈ B → ¬  Phi
z = ( Phi
y ∪
{0c})) | 
| 33 | 32 | nrex 2717 | 
. . . 4
⊢  ¬ ∃y ∈ B  Phi z = ( Phi y ∪
{0c}) | 
| 34 | 33 | biorfi 396 | 
. . 3
⊢ (z ∈ A ↔ (z
∈ A  ∨ ∃y ∈ B  Phi z = ( Phi y ∪ {0c}))) | 
| 35 | 19, 23, 34 | 3bitr4i 268 | 
. 2
⊢ (z ∈  Proj1 〈A, B〉 ↔ z
∈ A) | 
| 36 | 35 | eqriv 2350 | 
1
⊢  Proj1 〈A, B〉 = A |