NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  proj1op GIF version

Theorem proj1op 4601
Description: The first projection operator applied to an ordered pair yields its first member. Theorem X.2.7 of [Rosser] p. 282. (Contributed by SF, 3-Feb-2015.)
Assertion
Ref Expression
proj1op Proj1 A, B = A

Proof of Theorem proj1op
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-op 4567 . . . . 5 A, B = ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})})
21eleq2i 2417 . . . 4 ( Phi z A, B Phi z ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})}))
3 elun 3221 . . . 4 ( Phi z ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})}) ↔ ( Phi z {x y A x = Phi y} Phi z {x y B x = ( Phi y ∪ {0c})}))
4 vex 2863 . . . . . . 7 z V
54phiex 4573 . . . . . 6 Phi z V
6 eqeq1 2359 . . . . . . . . 9 (x = Phi z → (x = Phi y Phi z = Phi y))
7 phi11 4597 . . . . . . . . . 10 (z = y Phi z = Phi y)
8 equcom 1680 . . . . . . . . . 10 (z = yy = z)
97, 8bitr3i 242 . . . . . . . . 9 ( Phi z = Phi yy = z)
106, 9syl6bb 252 . . . . . . . 8 (x = Phi z → (x = Phi yy = z))
1110rexbidv 2636 . . . . . . 7 (x = Phi z → (y A x = Phi yy A y = z))
12 risset 2662 . . . . . . 7 (z Ay A y = z)
1311, 12syl6bbr 254 . . . . . 6 (x = Phi z → (y A x = Phi yz A))
145, 13elab 2986 . . . . 5 ( Phi z {x y A x = Phi y} ↔ z A)
15 eqeq1 2359 . . . . . . 7 (x = Phi z → (x = ( Phi y ∪ {0c}) ↔ Phi z = ( Phi y ∪ {0c})))
1615rexbidv 2636 . . . . . 6 (x = Phi z → (y B x = ( Phi y ∪ {0c}) ↔ y B Phi z = ( Phi y ∪ {0c})))
175, 16elab 2986 . . . . 5 ( Phi z {x y B x = ( Phi y ∪ {0c})} ↔ y B Phi z = ( Phi y ∪ {0c}))
1814, 17orbi12i 507 . . . 4 (( Phi z {x y A x = Phi y} Phi z {x y B x = ( Phi y ∪ {0c})}) ↔ (z A y B Phi z = ( Phi y ∪ {0c})))
192, 3, 183bitri 262 . . 3 ( Phi z A, B ↔ (z A y B Phi z = ( Phi y ∪ {0c})))
20 phieq 4571 . . . . 5 (x = z Phi x = Phi z)
2120eleq1d 2419 . . . 4 (x = z → ( Phi x A, B Phi z A, B))
22 df-proj1 4568 . . . 4 Proj1 A, B = {x Phi x A, B}
234, 21, 22elab2 2989 . . 3 (z Proj1 A, B Phi z A, B)
24 0cnelphi 4598 . . . . . . 7 ¬ 0c Phi z
25 ssun2 3428 . . . . . . . . 9 {0c} ( Phi y ∪ {0c})
26 0cex 4393 . . . . . . . . . 10 0c V
2726snid 3761 . . . . . . . . 9 0c {0c}
2825, 27sselii 3271 . . . . . . . 8 0c ( Phi y ∪ {0c})
29 eleq2 2414 . . . . . . . 8 ( Phi z = ( Phi y ∪ {0c}) → (0c Phi z ↔ 0c ( Phi y ∪ {0c})))
3028, 29mpbiri 224 . . . . . . 7 ( Phi z = ( Phi y ∪ {0c}) → 0c Phi z)
3124, 30mto 167 . . . . . 6 ¬ Phi z = ( Phi y ∪ {0c})
3231a1i 10 . . . . 5 (y B → ¬ Phi z = ( Phi y ∪ {0c}))
3332nrex 2717 . . . 4 ¬ y B Phi z = ( Phi y ∪ {0c})
3433biorfi 396 . . 3 (z A ↔ (z A y B Phi z = ( Phi y ∪ {0c})))
3519, 23, 343bitr4i 268 . 2 (z Proj1 A, Bz A)
3635eqriv 2350 1 Proj1 A, B = A
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  cun 3208  {csn 3738  0cc0c 4375  cop 4562   Phi cphi 4563   Proj1 cproj1 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568
This theorem is referenced by:  opth  4603  opexb  4604
  Copyright terms: Public domain W3C validator