NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfop2 GIF version

Theorem dfop2 4576
Description: Express the ordered pair via the set construction functors. (Contributed by SF, 2-Jan-2015.)
Assertion
Ref Expression
dfop2 A, B = ((Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) ∪ ( ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k B))

Proof of Theorem dfop2
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-op 4567 . 2 A, B = ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})})
2 vex 2863 . . . . . 6 x V
32elimak 4260 . . . . 5 (x (Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) ↔ y Ay, x Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))))
4 dfphi2 4570 . . . . . . . . 9 Phi y = (((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k y)
54eqeq2i 2363 . . . . . . . 8 (x = Phi yx = (((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k y))
6 vex 2863 . . . . . . . . 9 y V
76, 2opkelimagek 4273 . . . . . . . 8 (⟪y, x Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) ↔ x = (((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k y))
85, 7bitr4i 243 . . . . . . 7 (x = Phi y ↔ ⟪y, x Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))))
98rexbii 2640 . . . . . 6 (y A x = Phi yy Ay, x Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))))
109bicomi 193 . . . . 5 (y Ay, x Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) ↔ y A x = Phi y)
113, 10bitri 240 . . . 4 (x (Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) ↔ y A x = Phi y)
1211abbi2i 2465 . . 3 (Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) = {x y A x = Phi y}
13 dfop2lem2 4575 . . 3 ( ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k B) = {x y B x = ( Phi y ∪ {0c})}
1412, 13uneq12i 3417 . 2 ((Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) ∪ ( ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k B)) = ({x y A x = Phi y} ∪ {x y B x = ( Phi y ∪ {0c})})
151, 14eqtr4i 2376 1 A, B = ((Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k A) ∪ ( ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k B))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  {csn 3738  copk 4058  1cc1c 4135  1cpw1 4136   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184   Ik cidk 4185   Nn cnnc 4374  0cc0c 4375  cop 4562   Phi cphi 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567
This theorem is referenced by:  opeq1  4579  opeq2  4580  opexg  4588
  Copyright terms: Public domain W3C validator