NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfop GIF version

Theorem nfop 4605
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by SF, 2-Jan-2015.)
Hypotheses
Ref Expression
nfop.1 xA
nfop.2 xB
Assertion
Ref Expression
nfop xA, B

Proof of Theorem nfop
Dummy variables z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-op 4567 . 2 A, B = ({z w A z = Phi w} ∪ {z w B z = ( Phi w ∪ {0c})})
2 nfop.1 . . . . 5 xA
3 nfv 1619 . . . . 5 x z = Phi w
42, 3nfrex 2670 . . . 4 xw A z = Phi w
54nfab 2494 . . 3 x{z w A z = Phi w}
6 nfop.2 . . . . 5 xB
7 nfv 1619 . . . . 5 x z = ( Phi w ∪ {0c})
86, 7nfrex 2670 . . . 4 xw B z = ( Phi w ∪ {0c})
98nfab 2494 . . 3 x{z w B z = ( Phi w ∪ {0c})}
105, 9nfun 3232 . 2 x({z w A z = Phi w} ∪ {z w B z = ( Phi w ∪ {0c})})
111, 10nfcxfr 2487 1 xA, B
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  {cab 2339  wnfc 2477  wrex 2616  cun 3208  {csn 3738  0cc0c 4375  cop 4562   Phi cphi 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-nin 3212  df-compl 3213  df-un 3215  df-op 4567
This theorem is referenced by:  nfopd  4606
  Copyright terms: Public domain W3C validator