New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfop | GIF version |
Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by SF, 2-Jan-2015.) |
Ref | Expression |
---|---|
nfop.1 | ⊢ ℲxA |
nfop.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfop | ⊢ Ⅎx〈A, B〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-op 4567 | . 2 ⊢ 〈A, B〉 = ({z ∣ ∃w ∈ A z = Phi w} ∪ {z ∣ ∃w ∈ B z = ( Phi w ∪ {0c})}) | |
2 | nfop.1 | . . . . 5 ⊢ ℲxA | |
3 | nfv 1619 | . . . . 5 ⊢ Ⅎx z = Phi w | |
4 | 2, 3 | nfrex 2670 | . . . 4 ⊢ Ⅎx∃w ∈ A z = Phi w |
5 | 4 | nfab 2494 | . . 3 ⊢ Ⅎx{z ∣ ∃w ∈ A z = Phi w} |
6 | nfop.2 | . . . . 5 ⊢ ℲxB | |
7 | nfv 1619 | . . . . 5 ⊢ Ⅎx z = ( Phi w ∪ {0c}) | |
8 | 6, 7 | nfrex 2670 | . . . 4 ⊢ Ⅎx∃w ∈ B z = ( Phi w ∪ {0c}) |
9 | 8 | nfab 2494 | . . 3 ⊢ Ⅎx{z ∣ ∃w ∈ B z = ( Phi w ∪ {0c})} |
10 | 5, 9 | nfun 3232 | . 2 ⊢ Ⅎx({z ∣ ∃w ∈ A z = Phi w} ∪ {z ∣ ∃w ∈ B z = ( Phi w ∪ {0c})}) |
11 | 1, 10 | nfcxfr 2487 | 1 ⊢ Ⅎx〈A, B〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 {cab 2339 Ⅎwnfc 2477 ∃wrex 2616 ∪ cun 3208 {csn 3738 0cc0c 4375 〈cop 4562 Phi cphi 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-nin 3212 df-compl 3213 df-un 3215 df-op 4567 |
This theorem is referenced by: nfopd 4606 |
Copyright terms: Public domain | W3C validator |