New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abbii | GIF version |
Description: Equivalent wff's yield equal class abstractions (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
abbii | ⊢ {x ∣ φ} = {x ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2464 | . 2 ⊢ (∀x(φ ↔ ψ) ↔ {x ∣ φ} = {x ∣ ψ}) | |
2 | abbii.1 | . 2 ⊢ (φ ↔ ψ) | |
3 | 1, 2 | mpgbi 1549 | 1 ⊢ {x ∣ φ} = {x ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 |
This theorem is referenced by: rabswap 2791 rabbiia 2850 rabab 2877 csb2 3139 cbvcsb 3141 csbid 3144 csbco 3146 cbvreucsf 3201 unrab 3527 inrab 3528 inrab2 3529 difrab 3530 rabun2 3535 dfnul3 3554 rab0 3572 dfif2 3665 tprot 3816 pwpw0 3856 pwsn 3882 pwsnALT 3883 dfuni2 3894 dfint2 3929 int0 3941 cbviun 4004 cbviin 4005 iunrab 4014 iunid 4022 viin 4026 pw0 4161 dfiota2 4341 cbviota 4345 sb8iota 4347 addccom 4407 nncaddccl 4420 preaddccan2lem1 4455 ltfintrilem1 4466 dfevenfin2 4513 dfoddfin2 4514 nnadjoin 4521 tfinnn 4535 nulnnn 4557 phiun 4615 phialllem1 4617 opeq 4620 cbvopab 4631 cbvopab1 4633 cbvopab2 4634 cbvopab1s 4635 cbvopab2v 4637 unopab 4639 dfid3 4769 rabxp 4815 dfrn3 4904 dfdmf 4906 dmopab 4916 dmopabss 4917 dmopab3 4918 dfima4 4953 dfrnf 4963 rnopab 4968 rnopab2 4969 imadmrn 5009 imai 5011 epini 5022 iniseg 5023 iunfopab 5205 dfimafn2 5368 fvco2 5383 abrexco 5464 dfoprab2 5559 cbvoprab2 5569 dmoprab 5575 rnoprab 5577 rnoprab2 5578 fnrnov 5606 mptpreima 5683 dmmpt 5684 rnmpt2 5718 dfnnc3 5886 snec 5988 pmvalg 6011 map0e 6024 mapsn 6027 mucnc 6132 leconnnc 6219 addccan2nclem2 6265 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |