New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfsb3 | GIF version |
Description: An alternate definition of proper substitution df-sb 1649 that uses only primitive connectives (no defined terms) on the right-hand side. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
dfsb3 | ⊢ ([y / x]φ ↔ ((x = y → ¬ φ) → ∀x(x = y → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 359 | . 2 ⊢ (((x = y ∧ φ) ∨ ∀x(x = y → φ)) ↔ (¬ (x = y ∧ φ) → ∀x(x = y → φ))) | |
2 | dfsb2 2055 | . 2 ⊢ ([y / x]φ ↔ ((x = y ∧ φ) ∨ ∀x(x = y → φ))) | |
3 | imnan 411 | . . 3 ⊢ ((x = y → ¬ φ) ↔ ¬ (x = y ∧ φ)) | |
4 | 3 | imbi1i 315 | . 2 ⊢ (((x = y → ¬ φ) → ∀x(x = y → φ)) ↔ (¬ (x = y ∧ φ) → ∀x(x = y → φ))) |
5 | 1, 2, 4 | 3bitr4i 268 | 1 ⊢ ([y / x]φ ↔ ((x = y → ¬ φ) → ∀x(x = y → φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∀wal 1540 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |