| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfsb2 | GIF version | ||
| Description: An alternate definition of proper substitution that, like df-sb 1649, mixes free and bound variables to avoid distinct variable requirements. (Contributed by NM, 17-Feb-2005.) |
| Ref | Expression |
|---|---|
| dfsb2 | ⊢ ([y / x]φ ↔ ((x = y ∧ φ) ∨ ∀x(x = y → φ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 1747 | . . . 4 ⊢ (∀x x = y → x = y) | |
| 2 | sbequ2 1650 | . . . . 5 ⊢ (x = y → ([y / x]φ → φ)) | |
| 3 | 2 | sps 1754 | . . . 4 ⊢ (∀x x = y → ([y / x]φ → φ)) |
| 4 | orc 374 | . . . 4 ⊢ ((x = y ∧ φ) → ((x = y ∧ φ) ∨ ∀x(x = y → φ))) | |
| 5 | 1, 3, 4 | ee12an 1363 | . . 3 ⊢ (∀x x = y → ([y / x]φ → ((x = y ∧ φ) ∨ ∀x(x = y → φ)))) |
| 6 | sb4 2053 | . . . 4 ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x(x = y → φ))) | |
| 7 | olc 373 | . . . 4 ⊢ (∀x(x = y → φ) → ((x = y ∧ φ) ∨ ∀x(x = y → φ))) | |
| 8 | 6, 7 | syl6 29 | . . 3 ⊢ (¬ ∀x x = y → ([y / x]φ → ((x = y ∧ φ) ∨ ∀x(x = y → φ)))) |
| 9 | 5, 8 | pm2.61i 156 | . 2 ⊢ ([y / x]φ → ((x = y ∧ φ) ∨ ∀x(x = y → φ))) |
| 10 | sbequ1 1918 | . . . 4 ⊢ (x = y → (φ → [y / x]φ)) | |
| 11 | 10 | imp 418 | . . 3 ⊢ ((x = y ∧ φ) → [y / x]φ) |
| 12 | sb2 2023 | . . 3 ⊢ (∀x(x = y → φ) → [y / x]φ) | |
| 13 | 11, 12 | jaoi 368 | . 2 ⊢ (((x = y ∧ φ) ∨ ∀x(x = y → φ)) → [y / x]φ) |
| 14 | 9, 13 | impbii 180 | 1 ⊢ ([y / x]φ ↔ ((x = y ∧ φ) ∨ ∀x(x = y → φ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∀wal 1540 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: dfsb3 2056 |
| Copyright terms: Public domain | W3C validator |