| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hbsb2 | GIF version | ||
| Description: Bound-variable hypothesis builder for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hbsb2 | ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x[y / x]φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4 2053 | . 2 ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x(x = y → φ))) | |
| 2 | sb2 2023 | . . 3 ⊢ (∀x(x = y → φ) → [y / x]φ) | |
| 3 | 2 | a5i 1789 | . 2 ⊢ (∀x(x = y → φ) → ∀x[y / x]φ) |
| 4 | 1, 3 | syl6 29 | 1 ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x[y / x]φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: nfsb2 2058 sbequi 2059 sb9i 2094 hbs1 2105 |
| Copyright terms: Public domain | W3C validator |