| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dveel2 | GIF version | ||
| Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| dveel2 | ⊢ (¬ ∀x x = y → (z ∈ y → ∀x z ∈ y)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 1715 | . 2 ⊢ (w = y → (z ∈ w ↔ z ∈ y)) | |
| 2 | 1 | dvelimv 1939 | 1 ⊢ (¬ ∀x x = y → (z ∈ y → ∀x z ∈ y)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: ax15 2021 |
| Copyright terms: Public domain | W3C validator |