New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax15 | GIF version |
Description: Axiom ax-15 2143 is redundant if we assume ax-17 1616. Remark 9.6 in
[Megill] p. 448 (p. 16 of the preprint),
regarding axiom scheme C14'.
Note that w is a dummy variable introduced in the proof. On the web page, it is implicitly assumed to be distinct from all other variables. (This is made explicit in the database file set.mm). Its purpose is to satisfy the distinct variable requirements of dveel2 2020 and ax-17 1616. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ax15 | ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (x ∈ y → ∀z x ∈ y))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1 1730 | . . . . 5 ⊢ (¬ ∀z z = y → ∀z ¬ ∀z z = y) | |
2 | dveel2 2020 | . . . . 5 ⊢ (¬ ∀z z = y → (w ∈ y → ∀z w ∈ y)) | |
3 | 1, 2 | hbim1 1810 | . . . 4 ⊢ ((¬ ∀z z = y → w ∈ y) → ∀z(¬ ∀z z = y → w ∈ y)) |
4 | elequ1 1713 | . . . . 5 ⊢ (w = x → (w ∈ y ↔ x ∈ y)) | |
5 | 4 | imbi2d 307 | . . . 4 ⊢ (w = x → ((¬ ∀z z = y → w ∈ y) ↔ (¬ ∀z z = y → x ∈ y))) |
6 | 3, 5 | dvelim 2016 | . . 3 ⊢ (¬ ∀z z = x → ((¬ ∀z z = y → x ∈ y) → ∀z(¬ ∀z z = y → x ∈ y))) |
7 | nfa1 1788 | . . . . 5 ⊢ Ⅎz∀z z = y | |
8 | 7 | nfn 1793 | . . . 4 ⊢ Ⅎz ¬ ∀z z = y |
9 | 8 | 19.21 1796 | . . 3 ⊢ (∀z(¬ ∀z z = y → x ∈ y) ↔ (¬ ∀z z = y → ∀z x ∈ y)) |
10 | 6, 9 | syl6ib 217 | . 2 ⊢ (¬ ∀z z = x → ((¬ ∀z z = y → x ∈ y) → (¬ ∀z z = y → ∀z x ∈ y))) |
11 | 10 | pm2.86d 93 | 1 ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (x ∈ y → ∀z x ∈ y))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |