| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > elab3 | GIF version | ||
| Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) |
| Ref | Expression |
|---|---|
| elab3.1 | ⊢ (ψ → A ∈ V) |
| elab3.2 | ⊢ (x = A → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| elab3 | ⊢ (A ∈ {x ∣ φ} ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3.1 | . 2 ⊢ (ψ → A ∈ V) | |
| 2 | elab3.2 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
| 3 | 2 | elab3g 2992 | . 2 ⊢ ((ψ → A ∈ V) → (A ∈ {x ∣ φ} ↔ ψ)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (A ∈ {x ∣ φ} ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
| This theorem is referenced by: fvelrnb 5366 ovelrn 5609 |
| Copyright terms: Public domain | W3C validator |