HomeHome New Foundations Explorer
Theorem List (p. 30 of 64)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 2901-3000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremceqsex8v 2901* Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
A V    &   B V    &   C V    &   D V    &   E V    &   F V    &   G V    &   H V    &   (x = A → (φψ))    &   (y = B → (ψχ))    &   (z = C → (χθ))    &   (w = D → (θτ))    &   (v = E → (τη))    &   (u = F → (ηζ))    &   (t = G → (ζσ))    &   (s = H → (σρ))       (xyzwvuts(((x = A y = B) (z = C w = D)) ((v = E u = F) (t = G s = H)) φ) ↔ ρ)
 
Theoremgencbvex 2902* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
A V    &   (A = y → (φψ))    &   (A = y → (χθ))    &   (θx(χ A = y))       (x(χ φ) ↔ y(θ ψ))
 
Theoremgencbvex2 2903* Restatement of gencbvex 2902 with weaker hypotheses. (Contributed by Jeffrey Hankins, 6-Dec-2006.)
A V    &   (A = y → (φψ))    &   (A = y → (χθ))    &   (θx(χ A = y))       (x(χ φ) ↔ y(θ ψ))
 
Theoremgencbval 2904* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.)
A V    &   (A = y → (φψ))    &   (A = y → (χθ))    &   (θx(χ A = y))       (x(χφ) ↔ y(θψ))
 
Theoremsbhypf 2905* Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3172. (Contributed by Raph Levien, 10-Apr-2004.)
xψ    &   (x = A → (φψ))       (y = A → ([y / x]φψ))
 
Theoremvtoclgft 2906 Closed theorem form of vtoclgf 2914. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
(((xA xψ) (x(x = A → (φψ)) xφ) A V) → ψ)
 
Theoremvtocldf 2907 Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
(φA V)    &   ((φ x = A) → (ψχ))    &   (φψ)    &   xφ    &   (φxA)    &   (φ → Ⅎxχ)       (φχ)
 
Theoremvtocld 2908* Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
(φA V)    &   ((φ x = A) → (ψχ))    &   (φψ)       (φχ)
 
Theoremvtoclf 2909* Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1986. (Contributed by NM, 30-Aug-1993.)
xψ    &   A V    &   (x = A → (φψ))    &   φ       ψ
 
Theoremvtocl 2910* Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
A V    &   (x = A → (φψ))    &   φ       ψ
 
Theoremvtocl2 2911* Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
A V    &   B V    &   ((x = A y = B) → (φψ))    &   φ       ψ
 
Theoremvtocl3 2912* Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
A V    &   B V    &   C V    &   ((x = A y = B z = C) → (φψ))    &   φ       ψ
 
Theoremvtoclb 2913* Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
A V    &   (x = A → (φχ))    &   (x = A → (ψθ))    &   (φψ)       (χθ)
 
Theoremvtoclgf 2914 Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
xA    &   xψ    &   (x = A → (φψ))    &   φ       (A Vψ)
 
Theoremvtoclg 2915* Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
(x = A → (φψ))    &   φ       (A Vψ)
 
Theoremvtoclbg 2916* Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.)
(x = A → (φχ))    &   (x = A → (ψθ))    &   (φψ)       (A V → (χθ))
 
Theoremvtocl2gf 2917 Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
xA    &   yA    &   yB    &   xψ    &   yχ    &   (x = A → (φψ))    &   (y = B → (ψχ))    &   φ       ((A V B W) → χ)
 
Theoremvtocl3gf 2918 Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
xA    &   yA    &   zA    &   yB    &   zB    &   zC    &   xψ    &   yχ    &   zθ    &   (x = A → (φψ))    &   (y = B → (ψχ))    &   (z = C → (χθ))    &   φ       ((A V B W C X) → θ)
 
Theoremvtocl2g 2919* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
(x = A → (φψ))    &   (y = B → (ψχ))    &   φ       ((A V B W) → χ)
 
Theoremvtoclgaf 2920* Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
xA    &   xψ    &   (x = A → (φψ))    &   (x Bφ)       (A Bψ)
 
Theoremvtoclga 2921* Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
(x = A → (φψ))    &   (x Bφ)       (A Bψ)
 
Theoremvtocl2gaf 2922* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
xA    &   yA    &   yB    &   xψ    &   yχ    &   (x = A → (φψ))    &   (y = B → (ψχ))    &   ((x C y D) → φ)       ((A C B D) → χ)
 
Theoremvtocl2ga 2923* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
(x = A → (φψ))    &   (y = B → (ψχ))    &   ((x C y D) → φ)       ((A C B D) → χ)
 
Theoremvtocl3gaf 2924* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
xA    &   yA    &   zA    &   yB    &   zB    &   zC    &   xψ    &   yχ    &   zθ    &   (x = A → (φψ))    &   (y = B → (ψχ))    &   (z = C → (χθ))    &   ((x R y S z T) → φ)       ((A R B S C T) → θ)
 
Theoremvtocl3ga 2925* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
(x = A → (φψ))    &   (y = B → (ψχ))    &   (z = C → (χθ))    &   ((x D y R z S) → φ)       ((A D B R C S) → θ)
 
Theoremvtocleg 2926* Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
(x = Aφ)       (A Vφ)
 
Theoremvtoclegft 2927* Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2928.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
((A B xφ x(x = Aφ)) → φ)
 
Theoremvtoclef 2928* Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
xφ    &   A V    &   (x = Aφ)       φ
 
Theoremvtocle 2929* Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
A V    &   (x = Aφ)       φ
 
Theoremvtoclri 2930* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
(x = A → (φψ))    &   x B φ       (A Bψ)
 
Theoremspcimgft 2931 A closed version of spcimgf 2933. (Contributed by Mario Carneiro, 4-Jan-2017.)
xψ    &   xA       (x(x = A → (φψ)) → (A B → (xφψ)))
 
Theoremspcgft 2932 A closed version of spcgf 2935. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
xψ    &   xA       (x(x = A → (φψ)) → (A B → (xφψ)))
 
Theoremspcimgf 2933 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
xA    &   xψ    &   (x = A → (φψ))       (A V → (xφψ))
 
Theoremspcimegf 2934 Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
xA    &   xψ    &   (x = A → (ψφ))       (A V → (ψxφ))
 
Theoremspcgf 2935 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
xA    &   xψ    &   (x = A → (φψ))       (A V → (xφψ))
 
Theoremspcegf 2936 Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
xA    &   xψ    &   (x = A → (φψ))       (A V → (ψxφ))
 
Theoremspcimdv 2937* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(φA B)    &   ((φ x = A) → (ψχ))       (φ → (xψχ))
 
Theoremspcdv 2938* Rule of specialization, using implicit substitution. Analogous to rspcdv 2959. (Contributed by David Moews, 1-May-2017.)
(φA B)    &   ((φ x = A) → (ψχ))       (φ → (xψχ))
 
Theoremspcimedv 2939* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(φA B)    &   ((φ x = A) → (χψ))       (φ → (χxψ))
 
Theoremspcgv 2940* Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
(x = A → (φψ))       (A V → (xφψ))
 
Theoremspcegv 2941* Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
(x = A → (φψ))       (A V → (ψxφ))
 
Theoremspc2egv 2942* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
((x = A y = B) → (φψ))       ((A V B W) → (ψxyφ))
 
Theoremspc2gv 2943* Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
((x = A y = B) → (φψ))       ((A V B W) → (xyφψ))
 
Theoremspc3egv 2944* Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
((x = A y = B z = C) → (φψ))       ((A V B W C X) → (ψxyzφ))
 
Theoremspc3gv 2945* Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
((x = A y = B z = C) → (φψ))       ((A V B W C X) → (xyzφψ))
 
Theoremspcv 2946* Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
A V    &   (x = A → (φψ))       (xφψ)
 
Theoremspcev 2947* Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
A V    &   (x = A → (φψ))       (ψxφ)
 
Theoremspc2ev 2948* Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
A V    &   B V    &   ((x = A y = B) → (φψ))       (ψxyφ)
 
Theoremrspct 2949* A closed version of rspc 2950. (Contributed by Andrew Salmon, 6-Jun-2011.)
xψ       (x(x = A → (φψ)) → (A B → (x B φψ)))
 
Theoremrspc 2950* Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
xψ    &   (x = A → (φψ))       (A B → (x B φψ))
 
Theoremrspce 2951* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
xψ    &   (x = A → (φψ))       ((A B ψ) → x B φ)
 
Theoremrspcv 2952* Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
(x = A → (φψ))       (A B → (x B φψ))
 
Theoremrspccv 2953* Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
(x = A → (φψ))       (x B φ → (A Bψ))
 
Theoremrspcva 2954* Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
(x = A → (φψ))       ((A B x B φ) → ψ)
 
Theoremrspccva 2955* Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
(x = A → (φψ))       ((x B φ A B) → ψ)
 
Theoremrspcev 2956* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
(x = A → (φψ))       ((A B ψ) → x B φ)
 
Theoremrspcimdv 2957* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(φA B)    &   ((φ x = A) → (ψχ))       (φ → (x B ψχ))
 
Theoremrspcimedv 2958* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
(φA B)    &   ((φ x = A) → (χψ))       (φ → (χx B ψ))
 
Theoremrspcdv 2959* Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
(φA B)    &   ((φ x = A) → (ψχ))       (φ → (x B ψχ))
 
Theoremrspcedv 2960* Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
(φA B)    &   ((φ x = A) → (ψχ))       (φ → (χx B ψ))
 
Theoremrspc2 2961* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 9-Nov-2012.)
xχ    &   yψ    &   (x = A → (φχ))    &   (y = B → (χψ))       ((A C B D) → (x C y D φψ))
 
Theoremrspc2v 2962* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.)
(x = A → (φχ))    &   (y = B → (χψ))       ((A C B D) → (x C y D φψ))
 
Theoremrspc2va 2963* 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
(x = A → (φχ))    &   (y = B → (χψ))       (((A C B D) x C y D φ) → ψ)
 
Theoremrspc2ev 2964* 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.)
(x = A → (φχ))    &   (y = B → (χψ))       ((A C B D ψ) → x C y D φ)
 
Theoremrspc3v 2965* 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
(x = A → (φχ))    &   (y = B → (χθ))    &   (z = C → (θψ))       ((A R B S C T) → (x R y S z T φψ))
 
Theoremrspc3ev 2966* 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
(x = A → (φχ))    &   (y = B → (χθ))    &   (z = C → (θψ))       (((A R B S C T) ψ) → x R y S z T φ)
 
Theoremeqvinc 2967* A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
A V       (A = Bx(x = A x = B))
 
Theoremeqvincf 2968 A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.)
xA    &   xB    &   A V       (A = Bx(x = A x = B))
 
Theoremalexeq 2969* Two ways to express substitution of A for x in φ. (Contributed by NM, 2-Mar-1995.)
A V       (x(x = Aφ) ↔ x(x = A φ))
 
Theoremceqex 2970* Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
(x = A → (φx(x = A φ)))
 
Theoremceqsexg 2971* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
xψ    &   (x = A → (φψ))       (A V → (x(x = A φ) ↔ ψ))
 
Theoremceqsexgv 2972* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
(x = A → (φψ))       (A V → (x(x = A φ) ↔ ψ))
 
Theoremceqsrexv 2973* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
(x = A → (φψ))       (A B → (x B (x = A φ) ↔ ψ))
 
Theoremceqsrexbv 2974* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
(x = A → (φψ))       (x B (x = A φ) ↔ (A B ψ))
 
Theoremceqsrex2v 2975* Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
(x = A → (φψ))    &   (y = B → (ψχ))       ((A C B D) → (x C y D ((x = A y = B) φ) ↔ χ))
 
Theoremclel2 2976* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
A V       (A Bx(x = Ax B))
 
Theoremclel3g 2977* An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.)
(B V → (A Bx(x = B A x)))
 
Theoremclel3 2978* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
B V       (A Bx(x = B A x))
 
Theoremclel4 2979* An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
B V       (A Bx(x = BA x))
 
Theorempm13.183 2980* Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
(A V → (A = Bz(z = Az = B)))
 
Theoremrr19.3v 2981* Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 3644 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.)
(x A y A φx A φ)
 
Theoremrr19.28v 2982* Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 3646 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.)
(x A y A (φ ψ) ↔ x A (φ y A ψ))
 
Theoremelabgt 2983* Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 2987.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
((A B x(x = A → (φψ))) → (A {x φ} ↔ ψ))
 
Theoremelabgf 2984 Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
xA    &   xψ    &   (x = A → (φψ))       (A B → (A {x φ} ↔ ψ))
 
Theoremelabf 2985* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
xψ    &   A V    &   (x = A → (φψ))       (A {x φ} ↔ ψ)
 
Theoremelab 2986* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.)
A V    &   (x = A → (φψ))       (A {x φ} ↔ ψ)
 
Theoremelabg 2987* Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.)
(x = A → (φψ))       (A V → (A {x φ} ↔ ψ))
 
Theoremelab2g 2988* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
(x = A → (φψ))    &   B = {x φ}       (A V → (A Bψ))
 
Theoremelab2 2989* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
A V    &   (x = A → (φψ))    &   B = {x φ}       (A Bψ)
 
Theoremelab4g 2990* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
(x = A → (φψ))    &   B = {x φ}       (A B ↔ (A V ψ))
 
Theoremelab3gf 2991 Membership in a class abstraction, with a weaker antecedent than elabgf 2984. (Contributed by NM, 6-Sep-2011.)
xA    &   xψ    &   (x = A → (φψ))       ((ψA B) → (A {x φ} ↔ ψ))
 
Theoremelab3g 2992* Membership in a class abstraction, with a weaker antecedent than elabg 2987. (Contributed by NM, 29-Aug-2006.)
(x = A → (φψ))       ((ψA B) → (A {x φ} ↔ ψ))
 
Theoremelab3 2993* Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.)
(ψA V)    &   (x = A → (φψ))       (A {x φ} ↔ ψ)
 
Theoremelrabf 2994 Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
xA    &   xB    &   xψ    &   (x = A → (φψ))       (A {x B φ} ↔ (A B ψ))
 
Theoremelrab 2995* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.)
(x = A → (φψ))       (A {x B φ} ↔ (A B ψ))
 
Theoremelrab3 2996* Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.)
(x = A → (φψ))       (A B → (A {x B φ} ↔ ψ))
 
Theoremelrab2 2997* Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.)
(x = A → (φψ))    &   C = {x B φ}       (A C ↔ (A B ψ))
 
Theoremralab 2998* Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
(y = x → (φψ))       (x {y φ}χx(ψχ))
 
Theoremralrab 2999* Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
(y = x → (φψ))       (x {y A φ}χx A (ψχ))
 
Theoremrexab 3000* Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.)
(y = x → (φψ))       (x {y φ}χx(ψ χ))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >