New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elndif | GIF version |
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
elndif | ⊢ (A ∈ B → ¬ A ∈ (C ∖ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 3389 | . 2 ⊢ (A ∈ (C ∖ B) → ¬ A ∈ B) | |
2 | 1 | con2i 112 | 1 ⊢ (A ∈ B → ¬ A ∈ (C ∖ B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1710 ∖ cdif 3206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |