New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equs3 | GIF version |
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equs3 | ⊢ (∃x(x = y ∧ φ) ↔ ¬ ∀x(x = y → ¬ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alinexa 1578 | . 2 ⊢ (∀x(x = y → ¬ φ) ↔ ¬ ∃x(x = y ∧ φ)) | |
2 | 1 | con2bii 322 | 1 ⊢ (∃x(x = y ∧ φ) ↔ ¬ ∀x(x = y → ¬ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: equs5e 1888 sbn 2062 |
Copyright terms: Public domain | W3C validator |