Proof of Theorem sbn
| Step | Hyp | Ref
| Expression |
| 1 | | sbequ2 1650 |
. . . . 5
⊢ (x = y →
([y / x] ¬ φ
→ ¬ φ)) |
| 2 | | sbequ2 1650 |
. . . . 5
⊢ (x = y →
([y / x]φ →
φ)) |
| 3 | 1, 2 | nsyld 132 |
. . . 4
⊢ (x = y →
([y / x] ¬ φ
→ ¬ [y / x]φ)) |
| 4 | 3 | sps 1754 |
. . 3
⊢ (∀x x = y →
([y / x] ¬ φ
→ ¬ [y / x]φ)) |
| 5 | | sb4 2053 |
. . . 4
⊢ (¬ ∀x x = y →
([y / x] ¬ φ
→ ∀x(x = y → ¬ φ))) |
| 6 | | sb1 1651 |
. . . . . 6
⊢ ([y / x]φ → ∃x(x = y ∧ φ)) |
| 7 | | equs3 1644 |
. . . . . 6
⊢ (∃x(x = y ∧ φ) ↔
¬ ∀x(x = y → ¬ φ)) |
| 8 | 6, 7 | sylib 188 |
. . . . 5
⊢ ([y / x]φ → ¬ ∀x(x = y →
¬ φ)) |
| 9 | 8 | con2i 112 |
. . . 4
⊢ (∀x(x = y →
¬ φ) → ¬ [y / x]φ) |
| 10 | 5, 9 | syl6 29 |
. . 3
⊢ (¬ ∀x x = y →
([y / x] ¬ φ
→ ¬ [y / x]φ)) |
| 11 | 4, 10 | pm2.61i 156 |
. 2
⊢ ([y / x] ¬
φ → ¬ [y / x]φ) |
| 12 | | sbequ1 1918 |
. . . 4
⊢ (x = y →
(φ → [y / x]φ)) |
| 13 | 12 | con3rr3 128 |
. . 3
⊢ (¬ [y / x]φ → (x = y →
¬ φ)) |
| 14 | | sb2 2023 |
. . . . . 6
⊢ (∀x(x = y →
¬ ¬ φ) → [y / x] ¬
¬ φ) |
| 15 | | notnot 282 |
. . . . . . 7
⊢ (φ ↔ ¬ ¬ φ) |
| 16 | 15 | sbbii 1653 |
. . . . . 6
⊢ ([y / x]φ ↔ [y / x] ¬
¬ φ) |
| 17 | 14, 16 | sylibr 203 |
. . . . 5
⊢ (∀x(x = y →
¬ ¬ φ) → [y / x]φ) |
| 18 | 17 | con3i 127 |
. . . 4
⊢ (¬ [y / x]φ → ¬ ∀x(x = y →
¬ ¬ φ)) |
| 19 | | equs3 1644 |
. . . 4
⊢ (∃x(x = y ∧ ¬ φ)
↔ ¬ ∀x(x = y → ¬ ¬ φ)) |
| 20 | 18, 19 | sylibr 203 |
. . 3
⊢ (¬ [y / x]φ → ∃x(x = y ∧ ¬ φ)) |
| 21 | | df-sb 1649 |
. . 3
⊢ ([y / x] ¬
φ ↔ ((x = y →
¬ φ) ∧ ∃x(x = y ∧ ¬ φ))) |
| 22 | 13, 20, 21 | sylanbrc 645 |
. 2
⊢ (¬ [y / x]φ → [y / x] ¬
φ) |
| 23 | 11, 22 | impbii 180 |
1
⊢ ([y / x] ¬
φ ↔ ¬ [y / x]φ) |