New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equsb1 | GIF version |
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equsb1 | ⊢ [y / x]x = y |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb2 2023 | . 2 ⊢ (∀x(x = y → x = y) → [y / x]x = y) | |
2 | id 19 | . 2 ⊢ (x = y → x = y) | |
3 | 1, 2 | mpg 1548 | 1 ⊢ [y / x]x = y |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbequ8 2079 pm13.183 2980 |
Copyright terms: Public domain | W3C validator |