New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb2 | GIF version |
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb2 | ⊢ (∀x(x = y → φ) → [y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1747 | . 2 ⊢ (∀x(x = y → φ) → (x = y → φ)) | |
2 | equs4 1959 | . 2 ⊢ (∀x(x = y → φ) → ∃x(x = y ∧ φ)) | |
3 | df-sb 1649 | . 2 ⊢ ([y / x]φ ↔ ((x = y → φ) ∧ ∃x(x = y ∧ φ))) | |
4 | 1, 2, 3 | sylanbrc 645 | 1 ⊢ (∀x(x = y → φ) → [y / x]φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: stdpc4 2024 equsb1 2034 equsb2 2035 sbied 2036 sb6f 2039 hbsb2a 2041 hbsb2e 2042 sb3 2052 sb4b 2054 dfsb2 2055 hbsb2 2057 sbn 2062 sbi1 2063 sb6rf 2091 sbal1 2126 iota4 4358 |
Copyright terms: Public domain | W3C validator |