NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbt GIF version

Theorem sbt 2033
Description: A substitution into a theorem remains true. (See chvar 1986 and chvarv 2013 for versions using implicit substitution.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sbt.1 φ
Assertion
Ref Expression
sbt [y / x]φ

Proof of Theorem sbt
StepHypRef Expression
1 sbt.1 . 2 φ
21nfth 1553 . . 3 xφ
32sbf 2026 . 2 ([y / x]φφ)
41, 3mpbir 200 1 [y / x]φ
Colors of variables: wff setvar class
Syntax hints:  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  vjust  2861
  Copyright terms: Public domain W3C validator