Step | Hyp | Ref
| Expression |
1 | | eqeq1 2359 |
. 2
⊢ (y = A →
(y = B
↔ A = B)) |
2 | | eqeq2 2362 |
. . . 4
⊢ (y = A →
(z = y
↔ z = A)) |
3 | 2 | bibi1d 310 |
. . 3
⊢ (y = A →
((z = y
↔ z = B) ↔ (z =
A ↔ z = B))) |
4 | 3 | albidv 1625 |
. 2
⊢ (y = A →
(∀z(z = y ↔ z =
B) ↔ ∀z(z = A ↔
z = B))) |
5 | | eqeq2 2362 |
. . . 4
⊢ (y = B →
(z = y
↔ z = B)) |
6 | 5 | alrimiv 1631 |
. . 3
⊢ (y = B →
∀z(z = y ↔ z =
B)) |
7 | | stdpc4 2024 |
. . . 4
⊢ (∀z(z = y ↔
z = B)
→ [y / z](z = y ↔ z =
B)) |
8 | | sbbi 2071 |
. . . . 5
⊢ ([y / z](z = y ↔
z = B)
↔ ([y / z]z = y ↔ [y /
z]z =
B)) |
9 | | eqsb1 2454 |
. . . . . . 7
⊢ ([y / z]z = B ↔
y = B) |
10 | 9 | bibi2i 304 |
. . . . . 6
⊢ (([y / z]z = y ↔
[y / z]z = B) ↔ ([y /
z]z =
y ↔ y = B)) |
11 | | equsb1 2034 |
. . . . . . 7
⊢ [y / z]z = y |
12 | | bi1 178 |
. . . . . . 7
⊢ (([y / z]z = y ↔
y = B)
→ ([y / z]z = y → y =
B)) |
13 | 11, 12 | mpi 16 |
. . . . . 6
⊢ (([y / z]z = y ↔
y = B)
→ y = B) |
14 | 10, 13 | sylbi 187 |
. . . . 5
⊢ (([y / z]z = y ↔
[y / z]z = B) → y =
B) |
15 | 8, 14 | sylbi 187 |
. . . 4
⊢ ([y / z](z = y ↔
z = B)
→ y = B) |
16 | 7, 15 | syl 15 |
. . 3
⊢ (∀z(z = y ↔
z = B)
→ y = B) |
17 | 6, 16 | impbii 180 |
. 2
⊢ (y = B ↔
∀z(z = y ↔ z =
B)) |
18 | 1, 4, 17 | vtoclbg 2916 |
1
⊢ (A ∈ V → (A =
B ↔ ∀z(z = A ↔
z = B))) |