New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equsb3 | GIF version |
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) |
Ref | Expression |
---|---|
equsb3 | ⊢ ([y / x]x = z ↔ y = z) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb3lem 2101 | . . 3 ⊢ ([w / x]x = z ↔ w = z) | |
2 | 1 | sbbii 1653 | . 2 ⊢ ([y / w][w / x]x = z ↔ [y / w]w = z) |
3 | nfv 1619 | . . 3 ⊢ Ⅎw x = z | |
4 | 3 | sbco2 2086 | . 2 ⊢ ([y / w][w / x]x = z ↔ [y / x]x = z) |
5 | equsb3lem 2101 | . 2 ⊢ ([y / w]w = z ↔ y = z) | |
6 | 2, 4, 5 | 3bitr3i 266 | 1 ⊢ ([y / x]x = z ↔ y = z) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb8eu 2222 sb8iota 4347 |
Copyright terms: Public domain | W3C validator |