NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  equsb3 GIF version

Theorem equsb3 2102
Description: Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.)
Assertion
Ref Expression
equsb3 ([y / x]x = zy = z)
Distinct variable group:   x,z

Proof of Theorem equsb3
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 equsb3lem 2101 . . 3 ([w / x]x = zw = z)
21sbbii 1653 . 2 ([y / w][w / x]x = z ↔ [y / w]w = z)
3 nfv 1619 . . 3 w x = z
43sbco2 2086 . 2 ([y / w][w / x]x = z ↔ [y / x]x = z)
5 equsb3lem 2101 . 2 ([y / w]w = zy = z)
62, 4, 53bitr3i 266 1 ([y / x]x = zy = z)
Colors of variables: wff setvar class
Syntax hints:  wb 176  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  sb8eu  2222  sb8iota  4347
  Copyright terms: Public domain W3C validator