New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr3i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (φ ↔ ψ) |
3bitr3i.2 | ⊢ (φ ↔ χ) |
3bitr3i.3 | ⊢ (ψ ↔ θ) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (χ ↔ θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (φ ↔ χ) | |
2 | 3bitr3i.1 | . . 3 ⊢ (φ ↔ ψ) | |
3 | 1, 2 | bitr3i 242 | . 2 ⊢ (χ ↔ ψ) |
4 | 3bitr3i.3 | . 2 ⊢ (ψ ↔ θ) | |
5 | 3, 4 | bitri 240 | 1 ⊢ (χ ↔ θ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: an12 772 cadan 1392 19.35 1600 cbval2 2004 cbvex2 2005 sbco2d 2087 equsb3 2102 elsb1 2103 elsb2 2104 sbcom2 2114 dfsb7 2119 sb7f 2120 eq2tri 2412 eqsb1 2454 clelsb1 2455 clelsb2 2456 r19.35 2759 ralcom4 2878 rexcom4 2879 ceqsralt 2883 gencbvex 2902 gencbval 2904 ceqsrexbv 2974 euind 3024 reuind 3040 sbccomlem 3117 sbccom 3118 ab0 3570 difcom 3635 uniintsn 3964 pw1in 4165 dfimak2 4299 addcass 4416 elswap 4741 elxp2 4803 eqbrriv 4852 opelcnv 4894 dm0rn0 4922 opelres 4951 rninxp 5061 fununi 5161 dfoprab2 5559 opsnelsi 5775 oteltxp 5783 funsex 5829 pw1fnex 5853 brpw1fn 5855 nenpw1pwlem1 6085 lecex 6116 el2c 6192 brtcfn 6247 |
Copyright terms: Public domain | W3C validator |