![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > exlimdvv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (φ → (∃x∃yψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
2 | 1 | exlimdv 1636 | . 2 ⊢ (φ → (∃yψ → χ)) |
3 | 2 | exlimdv 1636 | 1 ⊢ (φ → (∃x∃yψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: ncfinlower 4483 sfin112 4529 sfindbl 4530 sfinltfin 4535 funsi 5520 fntxp 5804 fnpprod 5843 fundmen 6043 ce0addcnnul 6179 ce0nnulb 6182 ceclb 6183 fce 6188 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |