NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1637
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (φ → (ψχ))
Assertion
Ref Expression
exlimdvv (φ → (xyψχ))
Distinct variable groups:   χ,x   φ,x   χ,y   φ,y
Allowed substitution hints:   ψ(x,y)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (φ → (ψχ))
21exlimdv 1636 . 2 (φ → (yψχ))
32exlimdv 1636 1 (φ → (xyψχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  ncfinlower  4484  sfin112  4530  sfindbl  4531  sfinltfin  4536  funsi  5521  fntxp  5805  fnpprod  5844  fundmen  6044  ce0addcnnul  6180  ce0nnulb  6183  ceclb  6184  fce  6189  fnfrec  6321
  Copyright terms: Public domain W3C validator