| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > exlimdvv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| exlimdvv.1 | ⊢ (φ → (ψ → χ)) | 
| Ref | Expression | 
|---|---|
| exlimdvv | ⊢ (φ → (∃x∃yψ → χ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
| 2 | 1 | exlimdv 1636 | . 2 ⊢ (φ → (∃yψ → χ)) | 
| 3 | 2 | exlimdv 1636 | 1 ⊢ (φ → (∃x∃yψ → χ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 | 
| This theorem is referenced by: ncfinlower 4484 sfin112 4530 sfindbl 4531 sfinltfin 4536 funsi 5521 fntxp 5805 fnpprod 5844 fundmen 6044 ce0addcnnul 6180 ce0nnulb 6183 ceclb 6184 fce 6189 fnfrec 6321 | 
| Copyright terms: Public domain | W3C validator |