Step | Hyp | Ref
| Expression |
1 | | brtxp 5784 |
. . . . . . . . . 10
⊢ (x(F ⊗
G)y
↔ ∃a∃b(y = 〈a, b〉 ∧ xFa ∧ xGb)) |
2 | | brtxp 5784 |
. . . . . . . . . 10
⊢ (x(F ⊗
G)z
↔ ∃c∃d(z = 〈c, d〉 ∧ xFc ∧ xGd)) |
3 | 1, 2 | anbi12i 678 |
. . . . . . . . 9
⊢ ((x(F ⊗
G)y
∧ x(F ⊗
G)z)
↔ (∃a∃b(y = 〈a, b〉 ∧ xFa ∧ xGb) ∧ ∃c∃d(z = 〈c, d〉 ∧ xFc ∧ xGd))) |
4 | | ee4anv 1915 |
. . . . . . . . 9
⊢ (∃a∃b∃c∃d((y = 〈a, b〉 ∧ xFa ∧ xGb) ∧ (z = 〈c, d〉 ∧ xFc ∧ xGd)) ↔ (∃a∃b(y = 〈a, b〉 ∧ xFa ∧ xGb) ∧ ∃c∃d(z = 〈c, d〉 ∧ xFc ∧ xGd))) |
5 | 3, 4 | bitr4i 243 |
. . . . . . . 8
⊢ ((x(F ⊗
G)y
∧ x(F ⊗
G)z)
↔ ∃a∃b∃c∃d((y = 〈a, b〉 ∧ xFa ∧ xGb) ∧ (z = 〈c, d〉 ∧ xFc ∧ xGd))) |
6 | | an6 1261 |
. . . . . . . . . . 11
⊢ (((y = 〈a, b〉 ∧ xFa ∧ xGb) ∧ (z = 〈c, d〉 ∧ xFc ∧ xGd)) ↔ ((y =
〈a,
b〉 ∧ z = 〈c, d〉) ∧ (xFa ∧ xFc) ∧ (xGb ∧ xGd))) |
7 | | fununiq 5518 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun F ∧ xFa ∧ xFc) → a =
c) |
8 | 7 | 3expib 1154 |
. . . . . . . . . . . . . . 15
⊢ (Fun F → ((xFa ∧ xFc) → a =
c)) |
9 | | fununiq 5518 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun G ∧ xGb ∧ xGd) → b =
d) |
10 | 9 | 3expib 1154 |
. . . . . . . . . . . . . . 15
⊢ (Fun G → ((xGb ∧ xGd) → b =
d)) |
11 | 8, 10 | im2anan9 808 |
. . . . . . . . . . . . . 14
⊢ ((Fun F ∧ Fun G) → (((xFa ∧ xFc) ∧ (xGb ∧ xGd)) → (a =
c ∧
b = d))) |
12 | | eqeq12 2365 |
. . . . . . . . . . . . . . . 16
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉) → (y =
z ↔ 〈a, b〉 = 〈c, d〉)) |
13 | | opth 4603 |
. . . . . . . . . . . . . . . 16
⊢ (〈a, b〉 = 〈c, d〉 ↔
(a = c
∧ b =
d)) |
14 | 12, 13 | syl6bb 252 |
. . . . . . . . . . . . . . 15
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉) → (y =
z ↔ (a = c ∧ b = d))) |
15 | 14 | imbi2d 307 |
. . . . . . . . . . . . . 14
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉) → ((((xFa ∧ xFc) ∧ (xGb ∧ xGd)) → y =
z) ↔ (((xFa ∧ xFc) ∧ (xGb ∧ xGd)) → (a =
c ∧
b = d)))) |
16 | 11, 15 | syl5ibrcom 213 |
. . . . . . . . . . . . 13
⊢ ((Fun F ∧ Fun G) → ((y =
〈a,
b〉 ∧ z = 〈c, d〉) →
(((xFa ∧ xFc) ∧ (xGb ∧ xGd)) →
y = z))) |
17 | 16 | exp4a 589 |
. . . . . . . . . . . 12
⊢ ((Fun F ∧ Fun G) → ((y =
〈a,
b〉 ∧ z = 〈c, d〉) →
((xFa ∧ xFc) →
((xGb ∧ xGd) →
y = z)))) |
18 | 17 | 3impd 1165 |
. . . . . . . . . . 11
⊢ ((Fun F ∧ Fun G) → (((y =
〈a,
b〉 ∧ z = 〈c, d〉) ∧ (xFa ∧ xFc) ∧ (xGb ∧ xGd)) →
y = z)) |
19 | 6, 18 | syl5bi 208 |
. . . . . . . . . 10
⊢ ((Fun F ∧ Fun G) → (((y =
〈a,
b〉 ∧ xFa ∧ xGb) ∧ (z = 〈c, d〉 ∧ xFc ∧ xGd)) →
y = z)) |
20 | 19 | exlimdvv 1637 |
. . . . . . . . 9
⊢ ((Fun F ∧ Fun G) → (∃c∃d((y = 〈a, b〉 ∧ xFa ∧ xGb) ∧ (z = 〈c, d〉 ∧ xFc ∧ xGd)) → y =
z)) |
21 | 20 | exlimdvv 1637 |
. . . . . . . 8
⊢ ((Fun F ∧ Fun G) → (∃a∃b∃c∃d((y = 〈a, b〉 ∧ xFa ∧ xGb) ∧ (z = 〈c, d〉 ∧ xFc ∧ xGd)) → y =
z)) |
22 | 5, 21 | syl5bi 208 |
. . . . . . 7
⊢ ((Fun F ∧ Fun G) → ((x(F ⊗
G)y
∧ x(F ⊗
G)z)
→ y = z)) |
23 | 22 | alrimiv 1631 |
. . . . . 6
⊢ ((Fun F ∧ Fun G) → ∀z((x(F ⊗
G)y
∧ x(F ⊗
G)z)
→ y = z)) |
24 | 23 | alrimivv 1632 |
. . . . 5
⊢ ((Fun F ∧ Fun G) → ∀x∀y∀z((x(F ⊗
G)y
∧ x(F ⊗
G)z)
→ y = z)) |
25 | | dffun2 5120 |
. . . . 5
⊢ (Fun (F ⊗ G)
↔ ∀x∀y∀z((x(F ⊗ G)y ∧ x(F ⊗ G)z) →
y = z)) |
26 | 24, 25 | sylibr 203 |
. . . 4
⊢ ((Fun F ∧ Fun G) → Fun (F
⊗ G)) |
27 | | dmtxp 5803 |
. . . . 5
⊢ dom (F ⊗ G) =
(dom F ∩ dom G) |
28 | | ineq12 3453 |
. . . . 5
⊢ ((dom F = A ∧ dom G =
B) → (dom F ∩ dom G) =
(A ∩ B)) |
29 | 27, 28 | syl5eq 2397 |
. . . 4
⊢ ((dom F = A ∧ dom G =
B) → dom (F ⊗ G) =
(A ∩ B)) |
30 | 26, 29 | anim12i 549 |
. . 3
⊢ (((Fun F ∧ Fun G) ∧ (dom F = A ∧ dom G =
B)) → (Fun (F ⊗ G)
∧ dom (F
⊗ G) = (A ∩ B))) |
31 | 30 | an4s 799 |
. 2
⊢ (((Fun F ∧ dom F = A) ∧ (Fun G ∧ dom G =
B)) → (Fun (F ⊗ G)
∧ dom (F
⊗ G) = (A ∩ B))) |
32 | | df-fn 4791 |
. . 3
⊢ (F Fn A ↔
(Fun F ∧
dom F = A)) |
33 | | df-fn 4791 |
. . 3
⊢ (G Fn B ↔
(Fun G ∧
dom G = B)) |
34 | 32, 33 | anbi12i 678 |
. 2
⊢ ((F Fn A ∧ G Fn B) ↔ ((Fun F ∧ dom F = A) ∧ (Fun G ∧ dom G =
B))) |
35 | | df-fn 4791 |
. 2
⊢ ((F ⊗ G) Fn
(A ∩ B) ↔ (Fun (F ⊗ G)
∧ dom (F
⊗ G) = (A ∩ B))) |
36 | 31, 34, 35 | 3imtr4i 257 |
1
⊢ ((F Fn A ∧ G Fn B) → (F
⊗ G) Fn (A ∩ B)) |