New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fununiq | GIF version |
Description: Implicational form of part of the definition of a function. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
fununiq | ⊢ ((Fun F ∧ AFB ∧ AFC) → B = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . . . . 5 ⊢ (AFB → (A ∈ V ∧ B ∈ V)) | |
2 | brex 4690 | . . . . 5 ⊢ (AFC → (A ∈ V ∧ C ∈ V)) | |
3 | 1, 2 | anim12i 549 | . . . 4 ⊢ ((AFB ∧ AFC) → ((A ∈ V ∧ B ∈ V) ∧ (A ∈ V ∧ C ∈ V))) |
4 | anandi 801 | . . . 4 ⊢ ((A ∈ V ∧ (B ∈ V ∧ C ∈ V)) ↔ ((A ∈ V ∧ B ∈ V) ∧ (A ∈ V ∧ C ∈ V))) | |
5 | 3, 4 | sylibr 203 | . . 3 ⊢ ((AFB ∧ AFC) → (A ∈ V ∧ (B ∈ V ∧ C ∈ V))) |
6 | 5 | 3adant1 973 | . 2 ⊢ ((Fun F ∧ AFB ∧ AFC) → (A ∈ V ∧ (B ∈ V ∧ C ∈ V))) |
7 | dffun2 5120 | . . . . . 6 ⊢ (Fun F ↔ ∀x∀y∀z((xFy ∧ xFz) → y = z)) | |
8 | breq12 4645 | . . . . . . . . . 10 ⊢ ((x = A ∧ y = B) → (xFy ↔ AFB)) | |
9 | 8 | 3adant3 975 | . . . . . . . . 9 ⊢ ((x = A ∧ y = B ∧ z = C) → (xFy ↔ AFB)) |
10 | breq12 4645 | . . . . . . . . . 10 ⊢ ((x = A ∧ z = C) → (xFz ↔ AFC)) | |
11 | 10 | 3adant2 974 | . . . . . . . . 9 ⊢ ((x = A ∧ y = B ∧ z = C) → (xFz ↔ AFC)) |
12 | 9, 11 | anbi12d 691 | . . . . . . . 8 ⊢ ((x = A ∧ y = B ∧ z = C) → ((xFy ∧ xFz) ↔ (AFB ∧ AFC))) |
13 | eqeq12 2365 | . . . . . . . . 9 ⊢ ((y = B ∧ z = C) → (y = z ↔ B = C)) | |
14 | 13 | 3adant1 973 | . . . . . . . 8 ⊢ ((x = A ∧ y = B ∧ z = C) → (y = z ↔ B = C)) |
15 | 12, 14 | imbi12d 311 | . . . . . . 7 ⊢ ((x = A ∧ y = B ∧ z = C) → (((xFy ∧ xFz) → y = z) ↔ ((AFB ∧ AFC) → B = C))) |
16 | 15 | spc3gv 2945 | . . . . . 6 ⊢ ((A ∈ V ∧ B ∈ V ∧ C ∈ V) → (∀x∀y∀z((xFy ∧ xFz) → y = z) → ((AFB ∧ AFC) → B = C))) |
17 | 7, 16 | syl5bi 208 | . . . . 5 ⊢ ((A ∈ V ∧ B ∈ V ∧ C ∈ V) → (Fun F → ((AFB ∧ AFC) → B = C))) |
18 | 17 | exp4a 589 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ V ∧ C ∈ V) → (Fun F → (AFB → (AFC → B = C)))) |
19 | 18 | 3impd 1165 | . . 3 ⊢ ((A ∈ V ∧ B ∈ V ∧ C ∈ V) → ((Fun F ∧ AFB ∧ AFC) → B = C)) |
20 | 19 | 3expb 1152 | . 2 ⊢ ((A ∈ V ∧ (B ∈ V ∧ C ∈ V)) → ((Fun F ∧ AFB ∧ AFC) → B = C)) |
21 | 6, 20 | mpcom 32 | 1 ⊢ ((Fun F ∧ AFB ∧ AFC) → B = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Vcvv 2860 class class class wbr 4640 Fun wfun 4776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-id 4768 df-cnv 4786 df-fun 4790 |
This theorem is referenced by: funsi 5521 fntxp 5805 fnpprod 5844 enpw1 6063 enprmaplem3 6079 |
Copyright terms: Public domain | W3C validator |