NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  f1f GIF version

Theorem f1f 5259
Description: A one-to-one mapping is a mapping. (Contributed by set.mm contributors, 31-Dec-1996.)
Assertion
Ref Expression
f1f (F:A1-1BF:A–→B)

Proof of Theorem f1f
StepHypRef Expression
1 df-f1 4793 . 2 (F:A1-1B ↔ (F:A–→B Fun F))
21simplbi 446 1 (F:A1-1BF:A–→B)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccnv 4772  Fun wfun 4776  –→wf 4778  1-1wf1 4779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-f1 4793
This theorem is referenced by:  f1fn  5260  f1ss  5263  f1of  5288  dff1o5  5296  fun11iun  5306  dflec3  6222
  Copyright terms: Public domain W3C validator